mirror of
https://github.com/dtomlinson91/street_group_tech_test
synced 2025-12-22 11:55:45 +00:00
adding latest beam pipeline code
This commit is contained in:
@@ -65,16 +65,60 @@ class SplitColumn(beam.DoFn):
|
|||||||
|
|
||||||
|
|
||||||
class GenerateUniqueID(beam.DoFn):
|
class GenerateUniqueID(beam.DoFn):
|
||||||
|
def __init__(self, all_columns=False):
|
||||||
|
self.all_columns = all_columns
|
||||||
|
|
||||||
def process(self, element):
|
def process(self, element):
|
||||||
unique_string = ",".join(element[2:])
|
unique_string = (
|
||||||
|
",".join(element[2:]) if not self.all_columns else ",".join(element)
|
||||||
|
)
|
||||||
hashed_string = hashlib.md5(unique_string.encode())
|
hashed_string = hashlib.md5(unique_string.encode())
|
||||||
element.append(hashed_string.hexdigest())
|
element.append(hashed_string.hexdigest())
|
||||||
yield element
|
yield element
|
||||||
|
|
||||||
|
|
||||||
|
class DeduplicateByGroup(beam.DoFn):
|
||||||
|
def process(self, element):
|
||||||
|
if len(element[1]) > 0:
|
||||||
|
deduplicated_element = (element[0], [element[1][0]])
|
||||||
|
yield deduplicated_element
|
||||||
|
else:
|
||||||
|
yield element
|
||||||
|
|
||||||
|
|
||||||
|
class RemoveUniqueID(beam.DoFn):
|
||||||
|
def process(self, element):
|
||||||
|
element_no_id = element[-1][0]
|
||||||
|
element_no_id.pop(-1)
|
||||||
|
yield element_no_id
|
||||||
|
|
||||||
|
|
||||||
|
class ConvertDataToDict(beam.DoFn):
|
||||||
|
@property
|
||||||
|
def dict_keys(self):
|
||||||
|
return [
|
||||||
|
"price",
|
||||||
|
"transaction_date",
|
||||||
|
"postcode",
|
||||||
|
"number",
|
||||||
|
"flat_appartment",
|
||||||
|
"street",
|
||||||
|
"locality",
|
||||||
|
"town_city",
|
||||||
|
"district",
|
||||||
|
"county",
|
||||||
|
"building",
|
||||||
|
"property_id",
|
||||||
|
]
|
||||||
|
|
||||||
|
def process(self, element):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
csv_data = resources.path(
|
csv_data = resources.path(
|
||||||
"analyse_properties.data", "pp-monthly-update-new-version.csv"
|
"analyse_properties.data",
|
||||||
|
"pp-monthly-update-new-version.csv"
|
||||||
# "analyse_properties.data", "pp-complete.csv"
|
# "analyse_properties.data", "pp-complete.csv"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -90,7 +134,7 @@ def main():
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Clean the data
|
# Clean the data
|
||||||
clean = (
|
clean_drop = (
|
||||||
load
|
load
|
||||||
| "Drop unneeded columns"
|
| "Drop unneeded columns"
|
||||||
>> beam.Map(lambda element: list(slice_by_range(element, (1, 4), (7, 14))))
|
>> beam.Map(lambda element: list(slice_by_range(element, (1, 4), (7, 14))))
|
||||||
@@ -98,23 +142,44 @@ def main():
|
|||||||
>> beam.Map(lambda element: [e.upper() for e in element])
|
>> beam.Map(lambda element: [e.upper() for e in element])
|
||||||
| "Strip leading/trailing whitespace"
|
| "Strip leading/trailing whitespace"
|
||||||
>> beam.Map(lambda element: [e.strip() for e in element])
|
>> beam.Map(lambda element: [e.strip() for e in element])
|
||||||
| "Drop Empty Postcodes"
|
| "Drop Empty Postcodes" >> beam.ParDo(DropRecordsSingleEmptyColumn(2))
|
||||||
>> beam.ParDo(DropRecordsSingleEmptyColumn(2))
|
|
||||||
| "Drop empty PAON if missing SAON"
|
| "Drop empty PAON if missing SAON"
|
||||||
>> beam.ParDo(DropRecordsTwoEmptyColumn(3, 4))
|
>> beam.ParDo(DropRecordsTwoEmptyColumn(3, 4))
|
||||||
# | beam.ParDo(DebugShowColumnWithValueIn(3, ","))
|
# | beam.ParDo(DebugShowColumnWithValueIn(3, ","))
|
||||||
| beam.ParDo(DebugShowColumnWithValueIn(2, "AL1 4SZ"))
|
# | beam.ParDo(DebugShowColumnWithValueIn(2, "AL1 4SZ"))
|
||||||
| beam.ParDo(SplitColumn(3, ","))
|
# | beam.ParDo(DebugShowColumnWithValueIn(2, "B16 0AE"))
|
||||||
|
| "Split PAON into two columns if separated by comma"
|
||||||
|
>> beam.ParDo(SplitColumn(3, ","))
|
||||||
|
)
|
||||||
|
|
||||||
|
clean_deduplicate = (
|
||||||
|
clean_drop
|
||||||
|
| "Generate unique ID for all columns"
|
||||||
|
>> beam.ParDo(GenerateUniqueID(all_columns=True))
|
||||||
|
| "Group by the ID for all columns"
|
||||||
|
>> beam.GroupBy(lambda element: element[-1])
|
||||||
|
| "Deduplicate by the ID for all columns"
|
||||||
|
>> beam.ParDo(DeduplicateByGroup())
|
||||||
# | beam.Map(print)
|
# | beam.Map(print)
|
||||||
)
|
)
|
||||||
|
|
||||||
# Prepare the data
|
# Prepare the data
|
||||||
prepare = (
|
prepare = (
|
||||||
clean
|
clean_deduplicate
|
||||||
| beam.ParDo(GenerateUniqueID())
|
| "Remove previous unique ID" >> beam.ParDo(RemoveUniqueID())
|
||||||
|
| "Generate unique ID ignoring price & date"
|
||||||
|
>> beam.ParDo(GenerateUniqueID())
|
||||||
|
| "Group by the ID ignoring price & date"
|
||||||
|
>> beam.GroupBy(lambda element: element[-1])
|
||||||
| beam.Map(print)
|
| beam.Map(print)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Format the data
|
||||||
|
formatted = (
|
||||||
|
prepare
|
||||||
|
# | "Convert list to dict object" >>
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|||||||
Reference in New Issue
Block a user