mirror of
https://github.com/dtomlinson91/street_group_tech_test
synced 2025-12-22 03:55:43 +00:00
Merge final release (#1)
* adding initial skeleton * updating .gitignore * updating dev dependencies * adding report.py * updating notes * adding prospector.yaml * updating beam to install gcp extras * adding documentation * adding data exploration report + code * adding latest beam pipeline code * adding latest beam pipeline code * adding debug.py * adding latesty beam pipeline code * adding latest beam pipeline code * adding latest beam pipeline code * updating .gitignore * updating folder structure for data input/output * updating prospector.yaml * adding latest beam pipeline code * updating prospector.yaml * migrate beam pipeline to main.py * updating .gitignore * updating .gitignore * adding download script for data set * adding initial docs * moving inputs/outputs to use pathlib * removing shard_name_template from output file * adding pyenv 3.7.9 * removing requirements.txt for documentation * updating README.md * updating download data script for new location in GCS * adding latest beam pipeline code for dataflow * adding latest beam pipeline code for dataflow * adding latest beam pipeline code for dataflow * moving dataflow notes * updating prospector.yaml * adding latest beam pipeline code for dataflow * updating beam pipeline to use GroupByKey * updating download_data script with new bucket * update prospector.yaml * update dataflow documentation with new commands for vpc * adding latest beam pipeline code for dataflow with group optimisation * updating dataflow documentation * adding latest beam pipeline code for dataflow with group optimisation * updating download_data script with pp-2020 dataset * adding temporary notes * updating dataflow notes * adding latest beam pipeline code * updating dataflow notes * adding latest beam pipeline code for dataflow * adding debug print * moving panda-profiling report into docs * updating report.py * adding entrypoint command * adding initial docs * adding commands.md to notes * commenting out debug imports * updating documentation * updating latest beam pipeline with default inputs * updating poetry * adding requirements.txt * updating documentation
This commit is contained in:
394
analyse_properties/main.py
Normal file
394
analyse_properties/main.py
Normal file
@@ -0,0 +1,394 @@
|
||||
import argparse
|
||||
from datetime import datetime
|
||||
import hashlib
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import pathlib
|
||||
|
||||
import apache_beam as beam
|
||||
from apache_beam.options.pipeline_options import PipelineOptions, SetupOptions
|
||||
|
||||
# from analyse_properties.debug import * # noqa
|
||||
|
||||
def slice_by_range(element, *ranges):
|
||||
"""
|
||||
Slice a list with multiple ranges.
|
||||
|
||||
Args:
|
||||
element : The element.
|
||||
*ranges (tuple): Tuples containing a start,end index to slice the element.
|
||||
E.g (0, 3), (5, 6) - Keeps columns 0,1,2,5. Drops everything else.
|
||||
|
||||
Returns:
|
||||
list: The list sliced by the ranges
|
||||
"""
|
||||
return itertools.chain(*(itertools.islice(element, *r) for r in ranges))
|
||||
|
||||
|
||||
class DropRecordsSingleEmptyColumn(beam.DoFn):
|
||||
"""
|
||||
Drop the entire row if a given column is empty.
|
||||
|
||||
Args:
|
||||
index : The index of the column in the list.
|
||||
|
||||
Returns:
|
||||
None: If the length of the column is 0, drop the element.
|
||||
|
||||
Yields:
|
||||
element: If the length of the column is >0, keep the element.
|
||||
"""
|
||||
|
||||
def __init__(self, index):
|
||||
self.index = index
|
||||
|
||||
def process(self, element):
|
||||
column = element[self.index]
|
||||
if len(column) == 0:
|
||||
return None
|
||||
yield element
|
||||
|
||||
|
||||
class DropRecordsTwoEmptyColumn(beam.DoFn):
|
||||
"""
|
||||
Drop the entire row if both of two given columns are empty.
|
||||
|
||||
Args:
|
||||
index_0 : The index of the first column in the list.
|
||||
index_1 : The index of the second column in the list.
|
||||
|
||||
Returns:
|
||||
None: If the length of both columns is 0, drop the element.
|
||||
|
||||
Yields:
|
||||
element: If the length of both columns is >0, keep the element.
|
||||
"""
|
||||
|
||||
def __init__(self, index_0, index_1):
|
||||
self.index_0 = index_0
|
||||
self.index_1 = index_1
|
||||
|
||||
def process(self, element):
|
||||
column_0 = element[self.index_0]
|
||||
column_1 = element[self.index_1]
|
||||
if len(column_0) == 0 and len(column_1) == 0:
|
||||
return None
|
||||
yield element
|
||||
|
||||
|
||||
class SplitColumn(beam.DoFn):
|
||||
"""
|
||||
Split one column into two columns by a character.
|
||||
|
||||
Args:
|
||||
index : The index of the column in the list.
|
||||
split_char: The character to split the column by.
|
||||
"""
|
||||
|
||||
def __init__(self, index, split_char):
|
||||
self.index = index
|
||||
self.split_char = split_char
|
||||
|
||||
def process(self, element):
|
||||
# If there is a split based on the split_char, then keep the second result in
|
||||
# place (street number) and append the first result (building) at the end.
|
||||
try:
|
||||
part_0, part_1 = element[self.index].split(self.split_char)
|
||||
element[self.index] = part_1.strip()
|
||||
element.append(part_0.strip())
|
||||
yield element
|
||||
except ValueError:
|
||||
# append a blank column to keep column numbers consistent.
|
||||
element.append("")
|
||||
yield element
|
||||
|
||||
|
||||
class CreateMappingTable(beam.DoFn):
|
||||
"""
|
||||
Create a mapping table to be used as a side-input.
|
||||
|
||||
This mapping table has a key of an ID generated across all columns and a value of
|
||||
the raw property data.
|
||||
|
||||
The table is used to populate the raw property data after a GroupByKey using
|
||||
only the IDs in order to reduce the amount of data processed in the GroupByKey operation.
|
||||
"""
|
||||
|
||||
def process(self, element):
|
||||
# Join the row into a string.
|
||||
unique_string = ",".join(element)
|
||||
# Hash the string.
|
||||
hashed_string = hashlib.md5(unique_string.encode())
|
||||
# Format the resulting PCollection with the key of id and value of raw data.
|
||||
new_element = (hashed_string.hexdigest(), list(element))
|
||||
yield new_element
|
||||
|
||||
|
||||
class CreateUniquePropertyID(beam.DoFn):
|
||||
"""
|
||||
Create a unique property ID which does not include the price and date of sale.
|
||||
|
||||
Uses each row of the mapping table to create a PCollection with a key of the
|
||||
unique property ID and a value of the ID generated across all columns.
|
||||
"""
|
||||
|
||||
def process(self, element):
|
||||
unique_string = ",".join(element[-1][2:])
|
||||
hashed_string = hashlib.md5(unique_string.encode())
|
||||
new_element = (hashed_string.hexdigest(), element[0])
|
||||
yield new_element
|
||||
|
||||
|
||||
class DeduplicateIDs(beam.DoFn):
|
||||
"""Deduplicate a list of IDs."""
|
||||
|
||||
def process(self, element):
|
||||
deduplicated_list = list(set(element[-1]))
|
||||
new_element = (element[0], deduplicated_list)
|
||||
yield new_element
|
||||
|
||||
|
||||
def insert_data_for_id(element, mapping_table):
|
||||
"""
|
||||
Replace the ID with the raw data from the mapping table.
|
||||
|
||||
Args:
|
||||
element: The element.
|
||||
mapping_table (dict): The mapping table.
|
||||
|
||||
Yields:
|
||||
The element with IDs replaced with raw data.
|
||||
"""
|
||||
replaced_list = [mapping_table[data_id] for data_id in element[-1]]
|
||||
new_element = (element[0], replaced_list)
|
||||
yield new_element
|
||||
|
||||
|
||||
class ConvertDataToDict(beam.DoFn):
|
||||
"""Convert the processed data into a dict to be exported as a JSON object."""
|
||||
|
||||
@staticmethod
|
||||
def get_latest_transaction(transaction_dates):
|
||||
"""
|
||||
Get the date of the latest transaction for a list of dates.
|
||||
|
||||
Args:
|
||||
transaction_dates (str): A date in the form "%Y-%m-%d".
|
||||
|
||||
Returns:
|
||||
str: The year in the form "%Y" of the latest transaction date.
|
||||
"""
|
||||
transaction_dates = [
|
||||
datetime.strptime(individual_transaction, "%Y-%m-%d")
|
||||
for individual_transaction in transaction_dates
|
||||
]
|
||||
return max(transaction_dates).strftime("%Y")
|
||||
|
||||
@staticmethod
|
||||
def get_readable_address(address_components, address_comparisons):
|
||||
"""
|
||||
Create a human readable address from the locality/town/district/county columns.
|
||||
|
||||
Args:
|
||||
address_components (list): The preceeding parts of the address (street, postcode etc.)
|
||||
address_comparisons (list): The locality/town/district/county.
|
||||
|
||||
Returns:
|
||||
str: The complete address deduplicated & cleaned.
|
||||
"""
|
||||
# Get pairwise comparison to see if two locality/town/district/counties
|
||||
# are equivalent
|
||||
pairwise_comparison = [
|
||||
x == y
|
||||
for i, x in enumerate(address_comparisons)
|
||||
for j, y in enumerate(address_comparisons)
|
||||
if i > j
|
||||
]
|
||||
# Create a mask to eliminate the redundant parts of the address
|
||||
mask = [True, True, True, True]
|
||||
if pairwise_comparison[0]:
|
||||
mask[1] = False
|
||||
if pairwise_comparison[1] or pairwise_comparison[2]:
|
||||
mask[2] = False
|
||||
if pairwise_comparison[3] or pairwise_comparison[4] or pairwise_comparison[5]:
|
||||
mask[3] = False
|
||||
# Apply the mask
|
||||
applied_mask = list(itertools.compress(address_comparisons, mask))
|
||||
# Filter out empty items in list
|
||||
deduplicated_address_part = list(filter(None, applied_mask))
|
||||
# Filter out any missing parts of the address components
|
||||
cleaned_address_components = list(filter(None, address_components))
|
||||
|
||||
# Return the readable address
|
||||
return "\n".join(
|
||||
itertools.chain.from_iterable(
|
||||
[
|
||||
cleaned_address_components[0:-1],
|
||||
deduplicated_address_part,
|
||||
[cleaned_address_components[-1]],
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
def process(self, element):
|
||||
# Group together all the transactions for the property.
|
||||
property_transactions = [
|
||||
{
|
||||
"price": int(entry[0]),
|
||||
"transaction_date": entry[1].replace(" 00:00", ""),
|
||||
"year": int(entry[1][0:4]),
|
||||
}
|
||||
for entry in element[-1]
|
||||
]
|
||||
|
||||
# Create the dict to hold all the information about the property.
|
||||
json_object = {
|
||||
"property_id": element[0],
|
||||
"readable_address": None,
|
||||
"flat_appartment": list(element[-1])[0][4],
|
||||
"builing": list(element[-1])[0][10],
|
||||
"number": list(element[-1])[0][3],
|
||||
"street": list(element[-1])[0][5],
|
||||
"locality": list(element[-1])[0][6],
|
||||
"town": list(element[-1])[0][7],
|
||||
"district": list(element[-1])[0][8],
|
||||
"county": list(element[-1])[0][9],
|
||||
"postcode": list(element[-1])[0][2],
|
||||
"property_transactions": property_transactions,
|
||||
"latest_transaction_year": int(self.get_latest_transaction(
|
||||
[
|
||||
transaction["transaction_date"]
|
||||
for transaction in property_transactions
|
||||
]
|
||||
)),
|
||||
}
|
||||
|
||||
# Create a human readable address to go in the dict.
|
||||
json_object["readable_address"] = self.get_readable_address(
|
||||
[
|
||||
json_object["flat_appartment"],
|
||||
json_object["builing"],
|
||||
f'{json_object["number"]} {json_object["street"]}',
|
||||
json_object["postcode"],
|
||||
],
|
||||
[
|
||||
json_object["locality"],
|
||||
json_object["town"],
|
||||
json_object["district"],
|
||||
json_object["county"],
|
||||
],
|
||||
)
|
||||
yield json_object
|
||||
|
||||
|
||||
def run(argv=None, save_main_session=True):
|
||||
"""Entrypoint and definition of the pipeline."""
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
# Default input/output files when ran from base of repo with files in ./data
|
||||
input_file = (
|
||||
pathlib.Path("./data/input/pp-2020.csv")
|
||||
)
|
||||
output_file = (
|
||||
pathlib.Path("./data/output/pp-2020")
|
||||
)
|
||||
|
||||
# Arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--input",
|
||||
dest="input",
|
||||
default=str(input_file),
|
||||
help="Full path to the input file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
dest="output",
|
||||
default=str(output_file),
|
||||
help="Full path to the output file without extension.",
|
||||
)
|
||||
known_args, pipeline_args = parser.parse_known_args(argv)
|
||||
|
||||
# Pipeline options. save_main_session needed for DataFlow for global imports.
|
||||
pipeline_options = PipelineOptions(pipeline_args)
|
||||
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session
|
||||
|
||||
with beam.Pipeline(options=pipeline_options) as pipeline:
|
||||
# Load the data
|
||||
load = (
|
||||
pipeline
|
||||
| "Read input data" >> beam.io.ReadFromText(known_args.input)
|
||||
| "Split by ','" >> beam.Map(lambda element: element.split(","))
|
||||
| "Remove leading and trailing quotes"
|
||||
>> beam.Map(lambda element: [el.strip('"') for el in element])
|
||||
)
|
||||
|
||||
# Clean the data.
|
||||
clean_drop = (
|
||||
load
|
||||
| "Drop unneeded columns"
|
||||
>> beam.Map(lambda element: list(slice_by_range(element, (1, 4), (7, 14))))
|
||||
| "Convert to Upper Case"
|
||||
>> beam.Map(lambda element: [e.upper() for e in element])
|
||||
| "Strip leading/trailing whitespace"
|
||||
>> beam.Map(lambda element: [e.strip() for e in element])
|
||||
| "Drop Empty Postcodes" >> beam.ParDo(DropRecordsSingleEmptyColumn(2))
|
||||
| "Drop empty PAON if missing SAON"
|
||||
>> beam.ParDo(DropRecordsTwoEmptyColumn(3, 4))
|
||||
| "Split PAON into two columns if separated by comma"
|
||||
>> beam.ParDo(SplitColumn(3, ","))
|
||||
)
|
||||
|
||||
# Create a mapping table
|
||||
mapping_table_raw = (
|
||||
clean_drop
|
||||
| "Create a mapping table with key of id_all_columns and value of cleaned data."
|
||||
>> beam.ParDo(CreateMappingTable())
|
||||
)
|
||||
|
||||
# Condense mapping table into a single dict.
|
||||
mapping_table_condensed = (
|
||||
mapping_table_raw
|
||||
| "Condense mapping table into single dict" >> beam.combiners.ToDict()
|
||||
)
|
||||
|
||||
# Prepare the data by creating IDs, grouping together and using mapping table
|
||||
# to reinsert raw data.
|
||||
prepared = (
|
||||
mapping_table_raw
|
||||
| "Create unique ID ignoring price & date"
|
||||
>> beam.ParDo(CreateUniquePropertyID())
|
||||
| "Group by ID"
|
||||
>> beam.GroupByKey()
|
||||
| "Deduplicate to eliminate repeated transactions"
|
||||
>> beam.ParDo(DeduplicateIDs())
|
||||
| "Insert the raw data using the mapping table"
|
||||
>> beam.FlatMap(
|
||||
insert_data_for_id, beam.pvalue.AsSingleton(mapping_table_condensed)
|
||||
)
|
||||
)
|
||||
|
||||
# Format the data into a dict.
|
||||
formatted = (
|
||||
prepared
|
||||
| "Convert the prepared data into a dict object"
|
||||
>> beam.ParDo(ConvertDataToDict())
|
||||
)
|
||||
|
||||
# Save the data to a .json file.
|
||||
(
|
||||
formatted
|
||||
| "Combine into one PCollection" >> beam.combiners.ToList()
|
||||
| "Format output" >> beam.Map(json.dumps, indent=2)
|
||||
| "Save to .json file"
|
||||
>> beam.io.WriteToText(
|
||||
file_path_prefix=known_args.output,
|
||||
file_name_suffix=".json",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
run()
|
||||
Reference in New Issue
Block a user