migrate beam pipeline to main.py

This commit is contained in:
2021-09-26 01:10:09 +01:00
parent 54cf5e3e36
commit 9fdc6dce05
2 changed files with 293 additions and 259 deletions

293
analyse_properties/main.py Normal file
View File

@@ -0,0 +1,293 @@
import csv
from datetime import datetime
import hashlib
import io
from importlib import resources
import itertools
import pathlib
import apache_beam as beam
from apache_beam.io import fileio
# from analyse_properties.debug import DebugShowEmptyColumn, DebugShowColumnWithValueIn
def csv_reader(csv_file):
"""Read in a csv file."""
return csv.reader(io.TextIOWrapper(csv_file.open()))
def slice_by_range(element, *ranges):
"""Slice a list with multiple ranges."""
return itertools.chain(*(itertools.islice(element, *r) for r in ranges))
class DropRecordsSingleEmptyColumn(beam.DoFn):
"""If a given item in a list is empty, drop this entry from the PCollection."""
def __init__(self, index):
self.index = index
def process(self, element):
column = element[self.index]
if len(column) == 0:
return None
yield element
class DropRecordsTwoEmptyColumn(beam.DoFn):
"""If two given items in a list are both empty, drop this entry from the PCollection."""
def __init__(self, index_0, index_1):
self.index_0 = index_0
self.index_1 = index_1
def process(self, element):
column_0 = element[self.index_0]
column_1 = element[self.index_1]
if len(column_0) == 0 and len(column_1) == 0:
return None
yield element
class SplitColumn(beam.DoFn):
"""Split an item in a list into two separate items in the PCollection."""
def __init__(self, index, split_char):
self.index = index
self.split_char = split_char
def process(self, element):
# If there is a split based on the split_char, then keep the first result in
# place and append the second.
try:
part_0, part_1 = element[self.index].split(self.split_char)
element[self.index] = part_1.strip()
element.append(part_0.strip())
yield element
except ValueError:
element.append("")
yield element
class GenerateUniqueID(beam.DoFn):
"""
Generate a unique ID for the PCollection, either for all the columns or for the
uniquely identifying data only.
"""
def __init__(self, all_columns=False):
self.all_columns = all_columns
def process(self, element):
unique_string = (
",".join(element[2:]) if not self.all_columns else ",".join(element)
)
hashed_string = hashlib.md5(unique_string.encode())
# append the hash to the end
element.append(hashed_string.hexdigest())
yield element
class DeduplicateByID(beam.DoFn):
"""
If the PCollection has multiple entries after being grouped by ID for all columns,
deduplicate the list to keep only one.
"""
def process(self, element):
if len(element[1]) > 0:
deduplicated_element = (element[0], [element[1][0]])
yield deduplicated_element
else:
yield element
class RemoveUniqueID(beam.DoFn):
"""Remove the unique ID from the PCollection, transforming it back into a list."""
def process(self, element):
element_no_id = element[-1][0]
element_no_id.pop(-1)
yield element_no_id
class ConvertDataToDict(beam.DoFn):
"""Convert the processed data into a dict to be exported as a JSON object."""
@staticmethod
def get_latest_transaction(transaction_dates):
"""Get the date of the latest transaction."""
transaction_dates = [
datetime.strptime(individual_transaction, "%Y-%m-%d")
for individual_transaction in transaction_dates
]
return max(transaction_dates).strftime("%Y")
@staticmethod
def get_readable_address(address_components: list, address_comparisons: list):
# Get pairwise comparison to see if two locality/town/district/counties
# are equivalent
pairwise_comparison = [
x == y
for i, x in enumerate(address_comparisons)
for j, y in enumerate(address_comparisons)
if i > j
]
# Create a mask to eliminate the redundant parts of the address
mask = [True, True, True, True]
if pairwise_comparison[0]:
mask[1] = False
if pairwise_comparison[1] or pairwise_comparison[2]:
mask[2] = False
if pairwise_comparison[3] or pairwise_comparison[4] or pairwise_comparison[5]:
mask[3] = False
# Apply the mask
applied_mask = list(itertools.compress(address_comparisons, mask))
# Filter out empty items in list
deduplicated_address_part = list(filter(None, applied_mask))
# Filter out any missing parts of the address components
cleaned_address_components = list(filter(None, address_components))
# Return the readable address
return "\n".join(
itertools.chain.from_iterable(
[
cleaned_address_components[0:-1],
deduplicated_address_part,
[cleaned_address_components[-1]],
]
)
)
def process(self, element):
# Group together all the transactions for the property.
property_transactions = [
{
"price": entry[0],
"transaction_date": entry[1].replace(" 00:00", ""),
"year": entry[1][0:4],
}
for entry in element[-1]
]
# Create the dict to hold all the information about the property.
json_object = {
"property_id": element[0],
"readable_address": None,
"flat_appartment": element[-1][0][4],
"builing": element[-1][0][10],
"number": element[-1][0][3],
"street": element[-1][0][5],
"locality": element[-1][0][6],
"town": element[-1][0][7],
"district": element[-1][0][8],
"county": element[-1][0][9],
"postcode": element[-1][0][2],
"property_transactions": property_transactions,
"latest_transaction_year": self.get_latest_transaction(
[
transaction["transaction_date"]
for transaction in property_transactions
]
),
}
# Create a human readable address to go in the dict.
json_object["readable_address"] = self.get_readable_address(
[
json_object["flat_appartment"],
json_object["builing"],
f'{json_object["number"]} {json_object["street"]}',
json_object["postcode"],
],
[
json_object["locality"],
json_object["town"],
json_object["district"],
json_object["county"],
],
)
yield json_object
def main():
# Load in the data from a csv file.
csv_data = resources.path(
# "analyse_properties.data.input",
# "pp-monthly-update-new-version.csv"
"analyse_properties.data.input", "pp-complete.csv"
)
with beam.Pipeline() as pipeline:
# Load the data
with csv_data as csv_data_file:
# https://github.com/apache/beam/blob/v2.32.0/sdks/python/apache_beam/io/fileio_test.py#L155-L170
load = (
pipeline
| fileio.MatchFiles(str(csv_data_file))
| fileio.ReadMatches()
| beam.FlatMap(csv_reader)
)
# Clean the data by dropping unneeded rows.
clean_drop = (
load
| "Drop unneeded columns"
>> beam.Map(lambda element: list(slice_by_range(element, (1, 4), (7, 14))))
| "Convert to Upper Case"
>> beam.Map(lambda element: [e.upper() for e in element])
| "Strip leading/trailing whitespace"
>> beam.Map(lambda element: [e.strip() for e in element])
| "Drop Empty Postcodes" >> beam.ParDo(DropRecordsSingleEmptyColumn(2))
| "Drop empty PAON if missing SAON"
>> beam.ParDo(DropRecordsTwoEmptyColumn(3, 4))
| "Split PAON into two columns if separated by comma"
>> beam.ParDo(SplitColumn(3, ","))
)
# Clean the data by creating an ID, and deduplicating to eliminate repeated rows.
clean_deduplicate = (
clean_drop
| "Generate unique ID for all columns"
>> beam.ParDo(GenerateUniqueID(all_columns=True))
| "Group by the ID for all columns"
>> beam.GroupBy(lambda element: element[-1])
| "Deduplicate by the ID for all columns" >> beam.ParDo(DeduplicateByID())
)
# Prepare the data by generating an ID using the uniquely identifying information only
# and grouping them by this ID.
prepare = (
clean_deduplicate
| "Remove previous unique ID" >> beam.ParDo(RemoveUniqueID())
| "Generate unique ID ignoring price & date"
>> beam.ParDo(GenerateUniqueID())
| "Group by the ID ignoring price & date"
>> beam.GroupBy(lambda element: element[-1])
)
# Format the data into a dict.
formatted = (
prepare
| "Convert the prepared data into a dict object"
>> beam.ParDo(ConvertDataToDict())
)
# Save the data to a .json file.
output_file = pathlib.Path(__file__).parent / "data" / "output" / "pp-complete"
output = (
formatted
| "Combine into one PCollection" >> beam.combiners.ToList()
| "Save to .json file"
>> beam.io.WriteToText(
file_path_prefix=str(output_file),
file_name_suffix=".json",
shard_name_template="",
)
)
if __name__ == "__main__":
main()