mirror of
https://github.com/dtomlinson91/street_group_tech_test
synced 2025-12-22 03:55:43 +00:00
adding latest beam pipeline code for dataflow
This commit is contained in:
@@ -9,6 +9,7 @@ import pathlib
|
||||
import apache_beam as beam
|
||||
from apache_beam.options.pipeline_options import PipelineOptions, SetupOptions
|
||||
|
||||
from analyse_properties.debug import * # noqa
|
||||
|
||||
def slice_by_range(element, *ranges):
|
||||
"""
|
||||
@@ -36,7 +37,7 @@ class DropRecordsSingleEmptyColumn(beam.DoFn):
|
||||
None: If the length of the column is 0, drop the element.
|
||||
|
||||
Yields:
|
||||
element: If the length of the column isn't 0, keep the element.
|
||||
element: If the length of the column is >0, keep the element.
|
||||
"""
|
||||
|
||||
def __init__(self, index):
|
||||
@@ -61,7 +62,7 @@ class DropRecordsTwoEmptyColumn(beam.DoFn):
|
||||
None: If the length of both columns is 0, drop the element.
|
||||
|
||||
Yields:
|
||||
element: If the length of both columns isn't 0, keep the element.
|
||||
element: If the length of both columns is >0, keep the element.
|
||||
"""
|
||||
|
||||
def __init__(self, index_0, index_1):
|
||||
@@ -90,14 +91,15 @@ class SplitColumn(beam.DoFn):
|
||||
self.split_char = split_char
|
||||
|
||||
def process(self, element):
|
||||
# If there is a split based on the split_char, then keep the first result in
|
||||
# place and append the second column at the end.
|
||||
# If there is a split based on the split_char, then keep the second result in
|
||||
# place (street number) and append the first result (building) at the end.
|
||||
try:
|
||||
part_0, part_1 = element[self.index].split(self.split_char)
|
||||
element[self.index] = part_1.strip()
|
||||
element.append(part_0.strip())
|
||||
yield element
|
||||
except ValueError:
|
||||
# append a blank column to keep column numbers consistent.
|
||||
element.append("")
|
||||
yield element
|
||||
|
||||
@@ -111,20 +113,11 @@ class CreateMappingTable(beam.DoFn):
|
||||
|
||||
The table is used to populate the raw property data after a GroupByKey using
|
||||
only the IDs in order to reduce the amount of data processed in the GroupByKey operation.
|
||||
|
||||
Args:
|
||||
all_columns(bool): If True will use all fields to calculate the ID. If false
|
||||
will exclude the first two.
|
||||
"""
|
||||
|
||||
def __init__(self, all_columns=False):
|
||||
self.all_columns = all_columns
|
||||
|
||||
def process(self, element):
|
||||
# Join the row into a string.
|
||||
unique_string = (
|
||||
",".join(element[2:]) if not self.all_columns else ",".join(element)
|
||||
)
|
||||
unique_string = ",".join(element)
|
||||
# Hash the string.
|
||||
hashed_string = hashlib.md5(unique_string.encode())
|
||||
# Format the resulting PCollection with the key of id and value of raw data.
|
||||
@@ -148,6 +141,8 @@ class CreateUniquePropertyID(beam.DoFn):
|
||||
|
||||
|
||||
class DeduplicateIDs(beam.DoFn):
|
||||
"""Deduplicate a list of IDs."""
|
||||
|
||||
def process(self, element):
|
||||
deduplicated_list = list(set(element[-1]))
|
||||
new_element = (element[0], deduplicated_list)
|
||||
@@ -155,6 +150,16 @@ class DeduplicateIDs(beam.DoFn):
|
||||
|
||||
|
||||
def insert_data_for_id(element, mapping_table):
|
||||
"""
|
||||
Replace the ID with the raw data from the mapping table.
|
||||
|
||||
Args:
|
||||
element: The element.
|
||||
mapping_table (dict): The mapping table.
|
||||
|
||||
Yields:
|
||||
The element with IDs replaced with raw data.
|
||||
"""
|
||||
replaced_list = [mapping_table[data_id] for data_id in element[-1]]
|
||||
new_element = (element[0], replaced_list)
|
||||
yield new_element
|
||||
@@ -165,7 +170,15 @@ class ConvertDataToDict(beam.DoFn):
|
||||
|
||||
@staticmethod
|
||||
def get_latest_transaction(transaction_dates):
|
||||
"""Get the date of the latest transaction."""
|
||||
"""
|
||||
Get the date of the latest transaction for a list of dates.
|
||||
|
||||
Args:
|
||||
transaction_dates (str): A date in the form "%Y-%m-%d".
|
||||
|
||||
Returns:
|
||||
str: The year in the form "%Y" of the latest transaction date.
|
||||
"""
|
||||
transaction_dates = [
|
||||
datetime.strptime(individual_transaction, "%Y-%m-%d")
|
||||
for individual_transaction in transaction_dates
|
||||
@@ -173,7 +186,17 @@ class ConvertDataToDict(beam.DoFn):
|
||||
return max(transaction_dates).strftime("%Y")
|
||||
|
||||
@staticmethod
|
||||
def get_readable_address(address_components: list, address_comparisons: list):
|
||||
def get_readable_address(address_components, address_comparisons):
|
||||
"""
|
||||
Create a human readable address from the locality/town/district/county columns.
|
||||
|
||||
Args:
|
||||
address_components (list): The preceeding parts of the address (street, postcode etc.)
|
||||
address_comparisons (list): The locality/town/district/county.
|
||||
|
||||
Returns:
|
||||
str: The complete address deduplicated & cleaned.
|
||||
"""
|
||||
# Get pairwise comparison to see if two locality/town/district/counties
|
||||
# are equivalent
|
||||
pairwise_comparison = [
|
||||
@@ -194,7 +217,6 @@ class ConvertDataToDict(beam.DoFn):
|
||||
applied_mask = list(itertools.compress(address_comparisons, mask))
|
||||
# Filter out empty items in list
|
||||
deduplicated_address_part = list(filter(None, applied_mask))
|
||||
|
||||
# Filter out any missing parts of the address components
|
||||
cleaned_address_components = list(filter(None, address_components))
|
||||
|
||||
@@ -213,9 +235,9 @@ class ConvertDataToDict(beam.DoFn):
|
||||
# Group together all the transactions for the property.
|
||||
property_transactions = [
|
||||
{
|
||||
"price": entry[0],
|
||||
"price": int(entry[0]),
|
||||
"transaction_date": entry[1].replace(" 00:00", ""),
|
||||
"year": entry[1][0:4],
|
||||
"year": int(entry[1][0:4]),
|
||||
}
|
||||
for entry in element[-1]
|
||||
]
|
||||
@@ -234,12 +256,12 @@ class ConvertDataToDict(beam.DoFn):
|
||||
"county": list(element[-1])[0][9],
|
||||
"postcode": list(element[-1])[0][2],
|
||||
"property_transactions": property_transactions,
|
||||
"latest_transaction_year": self.get_latest_transaction(
|
||||
"latest_transaction_year": int(self.get_latest_transaction(
|
||||
[
|
||||
transaction["transaction_date"]
|
||||
for transaction in property_transactions
|
||||
]
|
||||
),
|
||||
)),
|
||||
}
|
||||
|
||||
# Create a human readable address to go in the dict.
|
||||
@@ -262,6 +284,8 @@ class ConvertDataToDict(beam.DoFn):
|
||||
|
||||
def run(argv=None, save_main_session=True):
|
||||
"""Entrypoint and definition of the pipeline."""
|
||||
logging.getLogger().setLevel(logging.INFO)
|
||||
|
||||
# Default input/output files
|
||||
input_file = (
|
||||
pathlib.Path(__file__).parents[1]
|
||||
@@ -281,10 +305,16 @@ def run(argv=None, save_main_session=True):
|
||||
# Arguments
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--input", dest="input", default=str(input_file), help="Input file."
|
||||
"--input",
|
||||
dest="input",
|
||||
default=str(input_file),
|
||||
help="Full path to the input file.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output", dest="output", default=str(output_file), help="Output file."
|
||||
"--output",
|
||||
dest="output",
|
||||
default=str(output_file),
|
||||
help="Full path to the output file without extension.",
|
||||
)
|
||||
known_args, pipeline_args = parser.parse_known_args(argv)
|
||||
|
||||
@@ -292,7 +322,6 @@ def run(argv=None, save_main_session=True):
|
||||
pipeline_options = PipelineOptions(pipeline_args)
|
||||
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session
|
||||
|
||||
# Load in the data from a csv file.
|
||||
with beam.Pipeline(options=pipeline_options) as pipeline:
|
||||
# Load the data
|
||||
load = (
|
||||
@@ -303,7 +332,7 @@ def run(argv=None, save_main_session=True):
|
||||
>> beam.Map(lambda element: [el.strip('"') for el in element])
|
||||
)
|
||||
|
||||
# Clean the data by dropping unneeded rows.
|
||||
# Clean the data.
|
||||
clean_drop = (
|
||||
load
|
||||
| "Drop unneeded columns"
|
||||
@@ -323,19 +352,22 @@ def run(argv=None, save_main_session=True):
|
||||
mapping_table_raw = (
|
||||
clean_drop
|
||||
| "Create a mapping table with key of id_all_columns and value of cleaned data."
|
||||
>> beam.ParDo(CreateMappingTable(all_columns=True))
|
||||
>> beam.ParDo(CreateMappingTable())
|
||||
)
|
||||
|
||||
# Condense mapping table into a single dict.
|
||||
mapping_table_condensed = (
|
||||
mapping_table_raw
|
||||
| "Condense mapping table into single dict" >> beam.combiners.ToDict()
|
||||
)
|
||||
|
||||
# Prepare the data by creating IDs, grouping together and using mapping table
|
||||
# to reinsert raw data.
|
||||
prepared = (
|
||||
mapping_table_raw
|
||||
| "Create unique ID ignoring price & date"
|
||||
>> beam.ParDo(CreateUniquePropertyID())
|
||||
| "Group IDs using all columns by IDs ignoring price & date"
|
||||
| "Group by ID"
|
||||
>> beam.GroupByKey()
|
||||
| "Deduplicate to eliminate repeated transactions"
|
||||
>> beam.ParDo(DeduplicateIDs())
|
||||
@@ -356,7 +388,7 @@ def run(argv=None, save_main_session=True):
|
||||
(
|
||||
formatted
|
||||
| "Combine into one PCollection" >> beam.combiners.ToList()
|
||||
| "Format output" >> beam.Map(json.dumps)
|
||||
| "Format output" >> beam.Map(json.dumps, indent=2)
|
||||
| "Save to .json file"
|
||||
>> beam.io.WriteToText(
|
||||
file_path_prefix=known_args.output,
|
||||
|
||||
Reference in New Issue
Block a user