import argparse from datetime import datetime import hashlib import itertools import json import logging import pathlib import apache_beam as beam from apache_beam.options.pipeline_options import PipelineOptions, SetupOptions # from analyse_properties.debug import DebugShowEmptyColumn, DebugShowColumnWithValueIn def slice_by_range(element, *ranges): """ Slice a list with multiple ranges. Args: element : The element. *ranges (tuple): Tuples containing a start,end index to slice the element. E.g (0, 3), (5, 6) - Keeps columns 0,1,2,5. Drops everything else. Returns: list: The list sliced by the ranges """ return itertools.chain(*(itertools.islice(element, *r) for r in ranges)) class DropRecordsSingleEmptyColumn(beam.DoFn): def __init__(self, index): self.index = index def process(self, element): """ Drop the entire row if a given column is empty. Args: element : The element Returns: None: If the length of the column is 0, drop the element. Yields: element: If the length of the column isn't 0, keep the element. """ column = element[self.index] if len(column) == 0: return None yield element class DropRecordsTwoEmptyColumn(beam.DoFn): """If two given items in a list are both empty, drop this entry from the PCollection.""" def __init__(self, index_0, index_1): self.index_0 = index_0 self.index_1 = index_1 def process(self, element): column_0 = element[self.index_0] column_1 = element[self.index_1] if len(column_0) == 0 and len(column_1) == 0: return None yield element class SplitColumn(beam.DoFn): """Split an item in a list into two separate items in the PCollection.""" def __init__(self, index, split_char): self.index = index self.split_char = split_char def process(self, element): # If there is a split based on the split_char, then keep the first result in # place and append the second. try: part_0, part_1 = element[self.index].split(self.split_char) element[self.index] = part_1.strip() element.append(part_0.strip()) yield element except ValueError: element.append("") yield element class CreateMappingTable(beam.DoFn): """ Generate a unique ID for the PCollection, either for all the columns or for the uniquely identifying data only. """ def __init__(self, all_columns=False): self.all_columns = all_columns def process(self, element): unique_string = ( ",".join(element[2:]) if not self.all_columns else ",".join(element) ) hashed_string = hashlib.md5(unique_string.encode()) # add the hash as a key to the data. new_element = (hashed_string.hexdigest(), list(element)) yield new_element # class CreateMappingTable(beam.DoFn): # def process(self, element): # unique_string = ",".join(element) # hashed_string = hashlib.md5(unique_string.encode()) # new_element = {hashed_string.hexdigest(): list(element)} # yield new_element class CreateUniquePropertyID(beam.DoFn): def process(self, element): unique_string = ",".join(element[-1][2:]) hashed_string = hashlib.md5(unique_string.encode()) new_element = (hashed_string.hexdigest(), element[0]) yield new_element class DeduplicateIDs(beam.DoFn): def process(self, element): deduplicated_list = list(set(element[-1])) new_element = (element[0], deduplicated_list) yield new_element # class InsertDataForID(beam.DoFn): # def __init__(self, mapping_table): # self.mapping_table = mapping_table # def process(self, element): # replaced_list = [self.mapping_table[x] for x in element[-1]] # new_element = (element[0], replaced_list) # yield new_element def insert_data_for_id(element, mapping_table): replaced_list = [] for data_id in element[-1]: replaced_list.append(mapping_table[data_id]) # replaced_list = [mapping_table[x] for x in element[-1]] new_element = (element[0], replaced_list) yield new_element # old class DeduplicateByID(beam.DoFn): """ If the PCollection has multiple entries after being grouped by ID for all columns, deduplicate the list to keep only one. """ def process(self, element): if len(list(element[1])) > 0: deduplicated_element = (element[0], [list(element[1])[0]]) yield deduplicated_element else: yield element class RemoveUniqueID(beam.DoFn): """Remove the unique ID from the PCollection, transforming it back into a list.""" def process(self, element): element_no_id = element[-1][0] yield element_no_id class ConvertDataToDict(beam.DoFn): """Convert the processed data into a dict to be exported as a JSON object.""" @staticmethod def get_latest_transaction(transaction_dates): """Get the date of the latest transaction.""" transaction_dates = [ datetime.strptime(individual_transaction, "%Y-%m-%d") for individual_transaction in transaction_dates ] return max(transaction_dates).strftime("%Y") @staticmethod def get_readable_address(address_components: list, address_comparisons: list): # Get pairwise comparison to see if two locality/town/district/counties # are equivalent pairwise_comparison = [ x == y for i, x in enumerate(address_comparisons) for j, y in enumerate(address_comparisons) if i > j ] # Create a mask to eliminate the redundant parts of the address mask = [True, True, True, True] if pairwise_comparison[0]: mask[1] = False if pairwise_comparison[1] or pairwise_comparison[2]: mask[2] = False if pairwise_comparison[3] or pairwise_comparison[4] or pairwise_comparison[5]: mask[3] = False # Apply the mask applied_mask = list(itertools.compress(address_comparisons, mask)) # Filter out empty items in list deduplicated_address_part = list(filter(None, applied_mask)) # Filter out any missing parts of the address components cleaned_address_components = list(filter(None, address_components)) # Return the readable address return "\n".join( itertools.chain.from_iterable( [ cleaned_address_components[0:-1], deduplicated_address_part, [cleaned_address_components[-1]], ] ) ) def process(self, element): # Group together all the transactions for the property. property_transactions = [ { "price": entry[0], "transaction_date": entry[1].replace(" 00:00", ""), "year": entry[1][0:4], } for entry in element[-1] ] # Create the dict to hold all the information about the property. json_object = { "property_id": element[0], # "readable_address": None, "flat_appartment": list(element[-1])[0][4], "builing": list(element[-1])[0][10], "number": list(element[-1])[0][3], "street": list(element[-1])[0][5], "locality": list(element[-1])[0][6], "town": list(element[-1])[0][7], "district": list(element[-1])[0][8], "county": list(element[-1])[0][9], "postcode": list(element[-1])[0][2], "property_transactions": property_transactions, "latest_transaction_year": self.get_latest_transaction( [ transaction["transaction_date"] for transaction in property_transactions ] ), } # Create a human readable address to go in the dict. # json_object["readable_address"] = self.get_readable_address( # [ # json_object["flat_appartment"], # json_object["builing"], # f'{json_object["number"]} {json_object["street"]}', # json_object["postcode"], # ], # [ # json_object["locality"], # json_object["town"], # json_object["district"], # json_object["county"], # ], # ) yield json_object def run(argv=None, save_main_session=True): """Entrypoint and definition of the pipeline.""" # Default input/output files input_file = ( pathlib.Path(__file__).parents[1] / "data" / "input" / "pp-monthly-update-new-version.csv" ) output_file = ( pathlib.Path(__file__).parents[1] / "data" / "output" / "pp-monthly-update-new-version" ) # Arguments parser = argparse.ArgumentParser() parser.add_argument( "--input", dest="input", default=str(input_file), help="Input file." ) parser.add_argument( "--output", dest="output", default=str(output_file), help="Output file." ) known_args, pipeline_args = parser.parse_known_args(argv) # Pipeline options. save_main_session needed for DataFlow for global imports. pipeline_options = PipelineOptions(pipeline_args) pipeline_options.view_as(SetupOptions).save_main_session = save_main_session # Load in the data from a csv file. with beam.Pipeline(options=pipeline_options) as pipeline: # Load the data load = ( pipeline | "Read input data" >> beam.io.ReadFromText(known_args.input) | "Split by ','" >> beam.Map(lambda element: element.split(",")) | "Remove leading and trailing quotes" >> beam.Map(lambda element: [el.strip('"') for el in element]) ) # Clean the data by dropping unneeded rows. clean_drop = ( load | "Drop unneeded columns" >> beam.Map(lambda element: list(slice_by_range(element, (1, 4), (7, 14)))) | "Convert to Upper Case" >> beam.Map(lambda element: [e.upper() for e in element]) | "Strip leading/trailing whitespace" >> beam.Map(lambda element: [e.strip() for e in element]) | "Drop Empty Postcodes" >> beam.ParDo(DropRecordsSingleEmptyColumn(2)) | "Drop empty PAON if missing SAON" >> beam.ParDo(DropRecordsTwoEmptyColumn(3, 4)) # | beam.ParDo(DebugShowColumnWithValueIn(2, "B16 0AE")) # | beam.ParDo(DebugShowColumnWithValueIn(2, "B90 3LA")) | "Split PAON into two columns if separated by comma" >> beam.ParDo(SplitColumn(3, ",")) ) # # Clean the data by creating an ID, and deduplicating to eliminate repeated rows. # clean_deduplicate = ( # clean_drop # | "Generate ID using all columns" # >> beam.ParDo(GenerateUniqueID(all_columns=True)) # | "Group by the ID for all columns" >> beam.GroupByKey() # | "Deduplicate by the ID for all columns" >> beam.ParDo(DeduplicateByID()) # ) # Create a mapping table mapping_table_raw = ( clean_drop | "Create a mapping table with key of id_all_columns and value of cleaned data." >> beam.ParDo(CreateMappingTable(all_columns=True)) # | beam.Map(print) ) mapping_table_condensed = ( mapping_table_raw | "Condense mapping table into single dict" >> beam.combiners.ToDict() # | beam.Map(print) ) prepared = ( mapping_table_raw | "Create unique ID ignoring price & date" >> beam.ParDo(CreateUniquePropertyID()) | "Group IDs using all columns by IDs ignoring price & date" >> beam.GroupByKey() | "Deduplicate to eliminate repeated transactions" >> beam.ParDo(DeduplicateIDs()) | "Insert the raw data using the mapping table" >> beam.FlatMap( insert_data_for_id, beam.pvalue.AsSingleton(mapping_table_condensed) ) # | beam.Map(print) ) # # Prepare the data by generating an ID using the uniquely identifying # # information only and grouping them by this ID. # prepare = ( # clean_deduplicate # | "Remove previous unique ID" >> beam.ParDo(RemoveUniqueID()) # | "Generate unique ID ignoring price & date old" # >> beam.ParDo(GenerateUniqueID()) # | "Group by the ID ignoring price & date" >> beam.GroupByKey() # # | beam.Map(print) # ) # Format the data into a dict. formatted = ( prepared | "Convert the prepared data into a dict object" >> beam.ParDo(ConvertDataToDict()) # | beam.Map(print) ) # Save the data to a .json file. ( formatted | "Combine into one PCollection" >> beam.combiners.ToList() | "Format output" >> beam.Map(json.dumps) | "Save to .json file" >> beam.io.WriteToText( file_path_prefix=known_args.output, file_name_suffix=".json", ) ) if __name__ == "__main__": logging.getLogger().setLevel(logging.INFO) run()