adding projects to repo

This commit is contained in:
dtomlinson
2019-11-04 14:38:31 +00:00
parent 6728b1ecf3
commit a285fad1ee
65 changed files with 171244 additions and 1 deletions

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 715 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,157 @@
#importing necessary libraries
import matplotlib.pyplot as plt
import torch
import numpy as np
from torch import nn
from torch import optim
from torchvision import datasets, models, transforms
import torch.nn.functional as F
import torch.utils.data
import pandas as pd
from collections import OrderedDict
from PIL import Image
import argparse
import json
# define Mandatory and Optional Arguments for the script
parser = argparse.ArgumentParser (description = "Parser of prediction script")
parser.add_argument ('image_dir', help = 'Provide path to image. Mandatory argument', type = str)
parser.add_argument ('load_dir', help = 'Provide path to checkpoint. Mandatory argument', type = str)
parser.add_argument ('--top_k', help = 'Top K most likely classes. Optional', type = int)
parser.add_argument ('--category_names', help = 'Mapping of categories to real names. JSON file name to be provided. Optional', type = str)
parser.add_argument ('--GPU', help = "Option to use GPU. Optional", type = str)
# a function that loads a checkpoint and rebuilds the model
def loading_model (file_path):
checkpoint = torch.load (file_path) #loading checkpoint from a file
if checkpoint ['arch'] == 'alexnet':
model = models.alexnet (pretrained = True)
else: #vgg13 as only 2 options available
model = models.vgg13 (pretrained = True)
model.classifier = checkpoint ['classifier']
model.load_state_dict (checkpoint ['state_dict'])
model.class_to_idx = checkpoint ['mapping']
for param in model.parameters():
param.requires_grad = False #turning off tuning of the model
return model
# function to process a PIL image for use in a PyTorch model
def process_image(image):
''' Scales, crops, and normalizes a PIL image for a PyTorch model,
returns an Numpy array
'''
im = Image.open (image) #loading image
width, height = im.size #original size
# smallest part: width or height should be kept not more than 256
if width > height:
height = 256
im.thumbnail ((50000, height), Image.ANTIALIAS)
else:
width = 256
im.thumbnail ((width,50000), Image.ANTIALIAS)
width, height = im.size #new size of im
#crop 224x224 in the center
reduce = 224
left = (width - reduce)/2
top = (height - reduce)/2
right = left + 224
bottom = top + 224
im = im.crop ((left, top, right, bottom))
#preparing numpy array
np_image = np.array (im)/255 #to make values from 0 to 1
np_image -= np.array ([0.485, 0.456, 0.406])
np_image /= np.array ([0.229, 0.224, 0.225])
#PyTorch expects the color channel to be the first dimension but it's the third dimension in the PIL image and Numpy array.
#The color channel needs to be first and retain the order of the other two dimensions.
np_image= np_image.transpose ((2,0,1))
return np_image
#defining prediction function
def predict(image_path, model, topkl, device):
''' Predict the class (or classes) of an image using a trained deep learning model.
'''
# Implement the code to predict the class from an image file
image = process_image (image_path) #loading image and processing it using above defined function
#we cannot pass image to model.forward 'as is' as it is expecting tensor, not numpy array
#converting to tensor
if device == 'cuda':
im = torch.from_numpy (image).type (torch.cuda.FloatTensor)
else:
im = torch.from_numpy (image).type (torch.FloatTensor)
im = im.unsqueeze (dim = 0) #used to make size of torch as expected. as forward method is working with batches,
#doing that we will have batch size = 1
#enabling GPU/CPU
model.to (device)
im.to (device)
with torch.no_grad ():
output = model.forward (im)
output_prob = torch.exp (output) #converting into a probability
probs, indeces = output_prob.topk (topkl)
probs = probs.cpu ()
indeces = indeces.cpu ()
probs = probs.numpy () #converting both to numpy array
indeces = indeces.numpy ()
probs = probs.tolist () [0] #converting both to list
indeces = indeces.tolist () [0]
mapping = {val: key for key, val in
model.class_to_idx.items()
}
classes = [mapping [item] for item in indeces]
classes = np.array (classes) #converting to Numpy array
return probs, classes
#setting values data loading
args = parser.parse_args ()
file_path = args.image_dir
#defining device: either cuda or cpu
if args.GPU == 'GPU':
device = 'cuda'
else:
device = 'cpu'
#loading JSON file if provided, else load default file name
if args.category_names:
with open(args.category_names, 'r') as f:
cat_to_name = json.load(f)
else:
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
pass
#loading model from checkpoint provided
model = loading_model (args.load_dir)
#defining number of classes to be predicted. Default = 1
if args.top_k:
nm_cl = args.top_k
else:
nm_cl = 1
#calculating probabilities and classes
probs, classes = predict (file_path, model, nm_cl, device)
#preparing class_names using mapping with cat_to_name
class_names = [cat_to_name [item] for item in classes]
for l in range (nm_cl):
print("Number: {}/{}.. ".format(l+1, nm_cl),
"Class name: {}.. ".format(class_names [l]),
"Probability: {:.3f}..% ".format(probs [l]*100),
)

View File

@@ -0,0 +1,220 @@
#importing necessary libraries
import matplotlib.pyplot as plt
import torch
import numpy as np
from torch import nn
from torch import optim
from torchvision import datasets, models, transforms
import torch.nn.functional as F
import torch.utils.data
import pandas as pd
from collections import OrderedDict
from PIL import Image
import argparse
import json
# define Mandatory and Optional Arguments for the script
parser = argparse.ArgumentParser (description = "Parser of training script")
parser.add_argument ('data_dir', help = 'Provide data directory. Mandatory argument', type = str)
parser.add_argument ('--save_dir', help = 'Provide saving directory. Optional argument', type = str)
parser.add_argument ('--arch', help = 'Vgg13 can be used if this argument specified, otherwise Alexnet will be used', type = str)
parser.add_argument ('--lrn', help = 'Learning rate, default value 0.001', type = float)
parser.add_argument ('--hidden_units', help = 'Hidden units in Classifier. Default value is 2048', type = int)
parser.add_argument ('--epochs', help = 'Number of epochs', type = int)
parser.add_argument ('--GPU', help = "Option to use GPU", type = str)
#setting values data loading
args = parser.parse_args ()
data_dir = args.data_dir
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
#defining device: either cuda or cpu
if args.GPU == 'GPU':
device = 'cuda'
else:
device = 'cpu'
#data loading
if data_dir: #making sure we do have value for data_dir
# Define your transforms for the training, validation, and testing sets
train_data_transforms = transforms.Compose ([transforms.RandomRotation (30),
transforms.RandomResizedCrop (224),
transforms.RandomHorizontalFlip (),
transforms.ToTensor (),
transforms.Normalize ([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
])
valid_data_transforms = transforms.Compose ([transforms.Resize (255),
transforms.CenterCrop (224),
transforms.ToTensor (),
transforms.Normalize ([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
])
test_data_transforms = transforms.Compose ([transforms.Resize (255),
transforms.CenterCrop (224),
transforms.ToTensor (),
transforms.Normalize ([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])
])
# Load the datasets with ImageFolder
train_image_datasets = datasets.ImageFolder (train_dir, transform = train_data_transforms)
valid_image_datasets = datasets.ImageFolder (valid_dir, transform = valid_data_transforms)
test_image_datasets = datasets.ImageFolder (test_dir, transform = test_data_transforms)
# Using the image datasets and the trainforms, define the dataloaders
train_loader = torch.utils.data.DataLoader(train_image_datasets, batch_size = 64, shuffle = True)
valid_loader = torch.utils.data.DataLoader(valid_image_datasets, batch_size = 64, shuffle = True)
test_loader = torch.utils.data.DataLoader(test_image_datasets, batch_size = 64, shuffle = True)
#end of data loading block
#mapping from category label to category name
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
def load_model (arch, hidden_units):
if arch == 'vgg13': #setting model based on vgg13
model = models.vgg13 (pretrained = True)
for param in model.parameters():
param.requires_grad = False
if hidden_units: #in case hidden_units were given
classifier = nn.Sequential (OrderedDict ([
('fc1', nn.Linear (25088, 4096)),
('relu1', nn.ReLU ()),
('dropout1', nn.Dropout (p = 0.3)),
('fc2', nn.Linear (4096, hidden_units)),
('relu2', nn.ReLU ()),
('dropout2', nn.Dropout (p = 0.3)),
('fc3', nn.Linear (hidden_units, 102)),
('output', nn.LogSoftmax (dim =1))
]))
else: #if hidden_units not given
classifier = nn.Sequential (OrderedDict ([
('fc1', nn.Linear (25088, 4096)),
('relu1', nn.ReLU ()),
('dropout1', nn.Dropout (p = 0.3)),
('fc2', nn.Linear (4096, 2048)),
('relu2', nn.ReLU ()),
('dropout2', nn.Dropout (p = 0.3)),
('fc3', nn.Linear (2048, 102)),
('output', nn.LogSoftmax (dim =1))
]))
else: #setting model based on default Alexnet ModuleList
arch = 'alexnet' #will be used for checkpoint saving, so should be explicitly defined
model = models.alexnet (pretrained = True)
for param in model.parameters():
param.requires_grad = False
if hidden_units: #in case hidden_units were given
classifier = nn.Sequential (OrderedDict ([
('fc1', nn.Linear (9216, 4096)),
('relu1', nn.ReLU ()),
('dropout1', nn.Dropout (p = 0.3)),
('fc2', nn.Linear (4096, hidden_units)),
('relu2', nn.ReLU ()),
('dropout2', nn.Dropout (p = 0.3)),
('fc3', nn.Linear (hidden_units, 102)),
('output', nn.LogSoftmax (dim =1))
]))
else: #if hidden_units not given
classifier = nn.Sequential (OrderedDict ([
('fc1', nn.Linear (9216, 4096)),
('relu1', nn.ReLU ()),
('dropout1', nn.Dropout (p = 0.3)),
('fc2', nn.Linear (4096, 2048)),
('relu2', nn.ReLU ()),
('dropout2', nn.Dropout (p = 0.3)),
('fc3', nn.Linear (2048, 102)),
('output', nn.LogSoftmax (dim =1))
]))
model.classifier = classifier #we can set classifier only once as cluasses self excluding (if/else)
return model, arch
# Defining validation Function. will be used during training
def validation(model, valid_loader, criterion):
model.to (device)
valid_loss = 0
accuracy = 0
for inputs, labels in valid_loader:
inputs, labels = inputs.to(device), labels.to(device)
output = model.forward(inputs)
valid_loss += criterion(output, labels).item()
ps = torch.exp(output)
equality = (labels.data == ps.max(dim=1)[1])
accuracy += equality.type(torch.FloatTensor).mean()
return valid_loss, accuracy
#loading model using above defined functiion
model, arch = load_model (args.arch, args.hidden_units)
#Actual training of the model
#initializing criterion and optimizer
criterion = nn.NLLLoss ()
if args.lrn: #if learning rate was provided
optimizer = optim.Adam (model.classifier.parameters (), lr = args.lrn)
else:
optimizer = optim.Adam (model.classifier.parameters (), lr = 0.001)
model.to (device) #device can be either cuda or cpu
#setting number of epochs to be run
if args.epochs:
epochs = args.epochs
else:
epochs = 7
print_every = 40
steps = 0
#runing through epochs
for e in range (epochs):
running_loss = 0
for ii, (inputs, labels) in enumerate (train_loader):
steps += 1
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad () #where optimizer is working on classifier paramters only
# Forward and backward passes
outputs = model.forward (inputs) #calculating output
loss = criterion (outputs, labels) #calculating loss (cost function)
loss.backward ()
optimizer.step () #performs single optimization step
running_loss += loss.item () # loss.item () returns scalar value of Loss function
if steps % print_every == 0:
model.eval () #switching to evaluation mode so that dropout is turned off
# Turn off gradients for validation, saves memory and computations
with torch.no_grad():
valid_loss, accuracy = validation(model, valid_loader, criterion)
print("Epoch: {}/{}.. ".format(e+1, epochs),
"Training Loss: {:.3f}.. ".format(running_loss/print_every),
"Valid Loss: {:.3f}.. ".format(valid_loss/len(valid_loader)),
"Valid Accuracy: {:.3f}%".format(accuracy/len(valid_loader)*100))
running_loss = 0
# Make sure training is back on
model.train()
#saving trained Model
model.to ('cpu') #no need to use cuda for saving/loading model.
# Save the checkpoint
model.class_to_idx = train_image_datasets.class_to_idx #saving mapping between predicted class and class name,
#second variable is a class name in numeric
#creating dictionary for model saving
checkpoint = {'classifier': model.classifier,
'state_dict': model.state_dict (),
'arch': arch,
'mapping': model.class_to_idx
}
#saving trained model for future use
if args.save_dir:
torch.save (checkpoint, args.save_dir + '/checkpoint.pth')
else:
torch.save (checkpoint, 'checkpoint.pth')