completed part 2 implementing gradient descent
This commit is contained in:
@@ -0,0 +1,24 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
admissions = pd.read_csv('binary.csv')
|
||||
|
||||
# Make dummy variables for rank
|
||||
data = pd.concat([admissions, pd.get_dummies(
|
||||
admissions['rank'], prefix='rank')], axis=1)
|
||||
data = data.drop('rank', axis=1)
|
||||
|
||||
# Standarize features
|
||||
for field in ['gre', 'gpa']:
|
||||
mean, std = data[field].mean(), data[field].std()
|
||||
data.loc[:, field] = (data[field] - mean) / std
|
||||
|
||||
# Split off random 10% of the data for testing
|
||||
np.random.seed(42)
|
||||
sample = np.random.choice(data.index, size=int(len(data) * 0.9), replace=False)
|
||||
data, test_data = data.ix[sample], data.drop(sample)
|
||||
|
||||
# Split into features and targets
|
||||
features, targets = data.drop('admit', axis=1), data['admit']
|
||||
features_test, targets_test = test_data.drop(
|
||||
'admit', axis=1), test_data['admit']
|
||||
@@ -0,0 +1,56 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
"""
|
||||
Calculate sigmoid
|
||||
"""
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
|
||||
def sigmoid_prime(x):
|
||||
"""
|
||||
# Derivative of the sigmoid function
|
||||
"""
|
||||
return sigmoid(x) * (1 - sigmoid(x))
|
||||
|
||||
|
||||
learnrate = 0.5
|
||||
x = np.array([1, 2, 3, 4])
|
||||
y = np.array(0.5)
|
||||
|
||||
# Initial weights
|
||||
w = np.array([0.5, -0.5, 0.3, 0.1])
|
||||
|
||||
# Calculate one gradient descent step for each weight
|
||||
# Note: Some steps have been consolidated, so there are
|
||||
# fewer variable names than in the above sample code
|
||||
|
||||
# TODO: Calculate the node's linear combination of inputs and weights
|
||||
h = np.dot(x, w)
|
||||
|
||||
# TODO: Calculate output of neural network (y hat)
|
||||
nn_output = sigmoid(h)
|
||||
|
||||
# TODO: Calculate error of neural network (y - y hat)
|
||||
error = y - nn_output
|
||||
|
||||
# TODO: Calculate the error term
|
||||
# Remember, this requires the output gradient, which we haven't
|
||||
# specifically added a variable for.
|
||||
error_term = error * sigmoid_prime(h)
|
||||
# Note: The sigmoid_prime function calculates sigmoid(h) twice,
|
||||
# but you've already calculated it once. You can make this
|
||||
# code more efficient by calculating the derivative directly
|
||||
# rather than calling sigmoid_prime, like this:
|
||||
# error_term = error * nn_output * (1 - nn_output)
|
||||
|
||||
# TODO: Calculate change in weights
|
||||
del_w = learnrate * error_term * x
|
||||
|
||||
print('Neural Network output:')
|
||||
print(nn_output)
|
||||
print('Amount of Error:')
|
||||
print(error)
|
||||
print('Change in Weights:')
|
||||
print(del_w)
|
||||
@@ -0,0 +1,71 @@
|
||||
import numpy as np
|
||||
from data_prep import features, targets, features_test, targets_test
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
"""
|
||||
Calculate sigmoid
|
||||
"""
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
# TODO: We haven't provided the sigmoid_prime function like we did in
|
||||
# the previous lesson to encourage you to come up with a more
|
||||
# efficient solution. If you need a hint, check out the comments
|
||||
# in solution.py from the previous lecture.
|
||||
|
||||
|
||||
# Use to same seed to make debugging easier
|
||||
np.random.seed(42)
|
||||
|
||||
n_records, n_features = features.shape
|
||||
last_loss = None
|
||||
|
||||
# Initialize weights
|
||||
weights = np.random.normal(scale=1 / n_features**.5, size=n_features)
|
||||
|
||||
# Neural Network hyperparameters
|
||||
epochs = 1000
|
||||
learnrate = 0.5
|
||||
|
||||
for e in range(epochs):
|
||||
del_w = np.zeros(weights.shape)
|
||||
for x, y in zip(features.values, targets):
|
||||
# Loop through all records, x is the input, y is the target
|
||||
|
||||
# Note: We haven't included the h variable from the previous
|
||||
# lesson. You can add it if you want, or you can calculate
|
||||
# the h together with the output
|
||||
|
||||
# TODO: Calculate the output (y hat)
|
||||
output = sigmoid(np.dot(x, weights))
|
||||
|
||||
# TODO: Calculate the error
|
||||
error = y - output
|
||||
|
||||
# TODO: Calculate the error term
|
||||
error_term = error * output * (1 - output)
|
||||
|
||||
# TODO: Calculate the change in weights for this sample
|
||||
# and add it to the total weight change
|
||||
del_w += error_term * x
|
||||
|
||||
# TODO: Update weights using the learning rate and the average change in
|
||||
# weights
|
||||
weights += learnrate * del_w / n_records
|
||||
|
||||
# Printing out the mean square error on the training set
|
||||
if e % (epochs / 10) == 0:
|
||||
out = sigmoid(np.dot(features, weights))
|
||||
loss = np.mean((out - targets) ** 2)
|
||||
if last_loss and last_loss < loss:
|
||||
print("Train loss: ", loss, " WARNING - Loss Increasing")
|
||||
else:
|
||||
print("Train loss: ", loss)
|
||||
last_loss = loss
|
||||
|
||||
|
||||
# Calculate accuracy on test data
|
||||
tes_out = sigmoid(np.dot(features_test, weights))
|
||||
predictions = tes_out > 0.5
|
||||
accuracy = np.mean(predictions == targets_test)
|
||||
print("Prediction accuracy: {:.3f}".format(accuracy))
|
||||
@@ -0,0 +1,38 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
"""
|
||||
Calculate sigmoid
|
||||
"""
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
|
||||
# Network size
|
||||
N_input = 4
|
||||
N_hidden = 3
|
||||
N_output = 2
|
||||
|
||||
np.random.seed(42)
|
||||
# Make some fake data
|
||||
X = np.random.randn(4)
|
||||
|
||||
weights_input_to_hidden = np.random.normal(
|
||||
0, scale=0.1, size=(N_input, N_hidden))
|
||||
weights_hidden_to_output = np.random.normal(
|
||||
0, scale=0.1, size=(N_hidden, N_output))
|
||||
|
||||
|
||||
# TODO: Make a forward pass through the network
|
||||
|
||||
hidden_layer_in = np.dot(X, weights_input_to_hidden)
|
||||
hidden_layer_out = sigmoid(hidden_layer_in)
|
||||
|
||||
print('Hidden-layer Output:')
|
||||
print(hidden_layer_out)
|
||||
|
||||
output_layer_in = np.dot(hidden_layer_out, weights_hidden_to_output)
|
||||
output_layer_out = sigmoid(output_layer_in)
|
||||
|
||||
print('Output-layer Output:')
|
||||
print(output_layer_out)
|
||||
Reference in New Issue
Block a user