completed part 2 implementing gradient descent
This commit is contained in:
@@ -0,0 +1,24 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
admissions = pd.read_csv('binary.csv')
|
||||
|
||||
# Make dummy variables for rank
|
||||
data = pd.concat([admissions, pd.get_dummies(
|
||||
admissions['rank'], prefix='rank')], axis=1)
|
||||
data = data.drop('rank', axis=1)
|
||||
|
||||
# Standarize features
|
||||
for field in ['gre', 'gpa']:
|
||||
mean, std = data[field].mean(), data[field].std()
|
||||
data.loc[:, field] = (data[field] - mean) / std
|
||||
|
||||
# Split off random 10% of the data for testing
|
||||
np.random.seed(42)
|
||||
sample = np.random.choice(data.index, size=int(len(data) * 0.9), replace=False)
|
||||
data, test_data = data.ix[sample], data.drop(sample)
|
||||
|
||||
# Split into features and targets
|
||||
features, targets = data.drop('admit', axis=1), data['admit']
|
||||
features_test, targets_test = test_data.drop(
|
||||
'admit', axis=1), test_data['admit']
|
||||
Reference in New Issue
Block a user