completed part 2 implementing gradient descent
This commit is contained in:
@@ -0,0 +1,38 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
"""
|
||||
Calculate sigmoid
|
||||
"""
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
|
||||
# Network size
|
||||
N_input = 4
|
||||
N_hidden = 3
|
||||
N_output = 2
|
||||
|
||||
np.random.seed(42)
|
||||
# Make some fake data
|
||||
X = np.random.randn(4)
|
||||
|
||||
weights_input_to_hidden = np.random.normal(
|
||||
0, scale=0.1, size=(N_input, N_hidden))
|
||||
weights_hidden_to_output = np.random.normal(
|
||||
0, scale=0.1, size=(N_hidden, N_output))
|
||||
|
||||
|
||||
# TODO: Make a forward pass through the network
|
||||
|
||||
hidden_layer_in = np.dot(X, weights_input_to_hidden)
|
||||
hidden_layer_out = sigmoid(hidden_layer_in)
|
||||
|
||||
print('Hidden-layer Output:')
|
||||
print(hidden_layer_out)
|
||||
|
||||
output_layer_in = np.dot(hidden_layer_out, weights_hidden_to_output)
|
||||
output_layer_out = sigmoid(output_layer_in)
|
||||
|
||||
print('Output-layer Output:')
|
||||
print(output_layer_out)
|
||||
Reference in New Issue
Block a user