completed part 2 implementing gradient descent

This commit is contained in:
2019-07-20 23:21:32 +01:00
parent 1c8aec47c2
commit 08463c5d0b
15 changed files with 1685 additions and 411 deletions

View File

@@ -0,0 +1,24 @@
import numpy as np
import pandas as pd
admissions = pd.read_csv('binary.csv')
# Make dummy variables for rank
data = pd.concat([admissions, pd.get_dummies(
admissions['rank'], prefix='rank')], axis=1)
data = data.drop('rank', axis=1)
# Standarize features
for field in ['gre', 'gpa']:
mean, std = data[field].mean(), data[field].std()
data.loc[:, field] = (data[field] - mean) / std
# Split off random 10% of the data for testing
np.random.seed(42)
sample = np.random.choice(data.index, size=int(len(data) * 0.9), replace=False)
data, test_data = data.ix[sample], data.drop(sample)
# Split into features and targets
features, targets = data.drop('admit', axis=1), data['admit']
features_test, targets_test = test_data.drop(
'admit', axis=1), test_data['admit']