completed part 1 of deep learning
This commit is contained in:
@@ -0,0 +1,32 @@
|
||||
import pandas as pd
|
||||
|
||||
# TODO: Set weight1, weight2, and bias
|
||||
weight1 = 1.0
|
||||
weight2 = 1.0
|
||||
bias = -1.25
|
||||
|
||||
|
||||
# DON'T CHANGE ANYTHING BELOW
|
||||
# Inputs and outputs
|
||||
test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
|
||||
correct_outputs = [False, False, False, True]
|
||||
outputs = []
|
||||
|
||||
# Generate and check output
|
||||
for test_input, correct_output in zip(test_inputs, correct_outputs):
|
||||
linear_combination = weight1 * \
|
||||
test_input[0] + weight2 * test_input[1] + bias
|
||||
output = int(linear_combination >= 0)
|
||||
is_correct_string = 'Yes' if output == correct_output else 'No'
|
||||
outputs.append([test_input[0], test_input[1],
|
||||
linear_combination, output, is_correct_string])
|
||||
|
||||
# Print output
|
||||
num_wrong = len([output[4] for output in outputs if output[4] == 'No'])
|
||||
output_frame = pd.DataFrame(outputs, columns=[
|
||||
'Input 1', ' Input 2', ' Linear Combination', ' Activation Output', ' Is Correct'])
|
||||
if not num_wrong:
|
||||
print('Nice! You got it all correct.\n')
|
||||
else:
|
||||
print('You got {} wrong. Keep trying!\n'.format(num_wrong))
|
||||
print(output_frame.to_string(index=False))
|
||||
@@ -0,0 +1,29 @@
|
||||
import pandas as pd
|
||||
|
||||
# TODO: Set weight1, weight2, and bias
|
||||
weight1 = 0
|
||||
weight2 = -1
|
||||
bias = 0.5
|
||||
|
||||
|
||||
# DON'T CHANGE ANYTHING BELOW
|
||||
# Inputs and outputs
|
||||
test_inputs = [(0, 0), (0, 1), (1, 0), (1, 1)]
|
||||
correct_outputs = [True, False, True, False]
|
||||
outputs = []
|
||||
|
||||
# Generate and check output
|
||||
for test_input, correct_output in zip(test_inputs, correct_outputs):
|
||||
linear_combination = weight1 * test_input[0] + weight2 * test_input[1] + bias
|
||||
output = int(linear_combination >= 0)
|
||||
is_correct_string = 'Yes' if output == correct_output else 'No'
|
||||
outputs.append([test_input[0], test_input[1], linear_combination, output, is_correct_string])
|
||||
|
||||
# Print output
|
||||
num_wrong = len([output[4] for output in outputs if output[4] == 'No'])
|
||||
output_frame = pd.DataFrame(outputs, columns=['Input 1', ' Input 2', ' Linear Combination', ' Activation Output', ' Is Correct'])
|
||||
if not num_wrong:
|
||||
print('Nice! You got it all correct.\n')
|
||||
else:
|
||||
print('You got {} wrong. Keep trying!\n'.format(num_wrong))
|
||||
print(output_frame.to_string(index=False))
|
||||
Reference in New Issue
Block a user