completed deep learning section
This commit is contained in:
@@ -0,0 +1,104 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Network(nn.Module):
|
||||
def __init__(self, input_size, output_size, hidden_layers, drop_p=0.5):
|
||||
''' Builds a feedforward network with arbitrary hidden layers.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
input_size: integer, size of the input layer
|
||||
output_size: integer, size of the output layer
|
||||
hidden_layers: list of integers, the sizes of the hidden layers
|
||||
|
||||
'''
|
||||
super().__init__()
|
||||
# Input to a hidden layer
|
||||
self.hidden_layers = nn.ModuleList(
|
||||
[nn.Linear(input_size, hidden_layers[0])])
|
||||
|
||||
# Add a variable number of more hidden layers
|
||||
layer_sizes = zip(hidden_layers[:-1], hidden_layers[1:])
|
||||
self.hidden_layers.extend([nn.Linear(h1, h2)
|
||||
for h1, h2 in layer_sizes])
|
||||
|
||||
self.output = nn.Linear(hidden_layers[-1], output_size)
|
||||
|
||||
self.dropout = nn.Dropout(p=drop_p)
|
||||
|
||||
def forward(self, x):
|
||||
''' Forward pass through the network, returns the output logits '''
|
||||
|
||||
for each in self.hidden_layers:
|
||||
x = F.relu(each(x))
|
||||
x = self.dropout(x)
|
||||
x = self.output(x)
|
||||
|
||||
return F.log_softmax(x, dim=1)
|
||||
|
||||
|
||||
def validation(model, testloader, criterion):
|
||||
accuracy = 0
|
||||
test_loss = 0
|
||||
for images, labels in testloader:
|
||||
|
||||
images = images.resize_(images.size()[0], 784)
|
||||
|
||||
output = model.forward(images)
|
||||
test_loss += criterion(output, labels).item()
|
||||
|
||||
# Calculating the accuracy
|
||||
# Model's output is log-softmax, take exponential to get the probabilities
|
||||
ps = torch.exp(output)
|
||||
# Class with highest probability is our predicted class, compare with true label
|
||||
equality = (labels.data == ps.max(1)[1])
|
||||
# Accuracy is number of correct predictions divided by all predictions, just take the mean
|
||||
accuracy += equality.type_as(torch.FloatTensor()).mean()
|
||||
|
||||
return test_loss, accuracy
|
||||
|
||||
|
||||
def train(model, trainloader, testloader, criterion, optimizer, epochs=5, print_every=40):
|
||||
|
||||
steps = 0
|
||||
running_loss = 0
|
||||
for e in range(epochs):
|
||||
# Model in training mode, dropout is on
|
||||
model.train()
|
||||
for images, labels in trainloader:
|
||||
steps += 1
|
||||
|
||||
# Flatten images into a 784 long vector
|
||||
images.resize_(images.size()[0], 784)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
output = model.forward(images)
|
||||
loss = criterion(output, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
running_loss += loss.item()
|
||||
|
||||
if steps % print_every == 0:
|
||||
# Model in inference mode, dropout is off
|
||||
model.eval()
|
||||
|
||||
# Turn off gradients for validation, will speed up inference
|
||||
with torch.no_grad():
|
||||
test_loss, accuracy = validation(
|
||||
model, testloader, criterion)
|
||||
|
||||
print("Epoch: {}/{}.. ".format(e + 1, epochs),
|
||||
"Training Loss: {:.3f}.. ".format(
|
||||
running_loss / print_every),
|
||||
"Test Loss: {:.3f}.. ".format(
|
||||
test_loss / len(testloader)),
|
||||
"Test Accuracy: {:.3f}".format(accuracy / len(testloader)))
|
||||
|
||||
running_loss = 0
|
||||
|
||||
# Make sure dropout and grads are on for training
|
||||
model.train()
|
||||
Reference in New Issue
Block a user