Finished Model Evaluation Metrics
This commit is contained in:
@@ -0,0 +1,35 @@
|
||||
# Import statements
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
# Import the train test split
|
||||
# http://scikit-learn.org/0.16/modules/generated/sklearn.cross_validation.train_test_split.html
|
||||
|
||||
|
||||
# Read in the data.
|
||||
data = np.asarray(pd.read_csv('data.csv', header=None))
|
||||
# Assign the features to the variable X, and the labels to the variable y.
|
||||
X = data[:, 0:2]
|
||||
y = data[:, 2]
|
||||
|
||||
# Use train test split to split your data
|
||||
# Use a test size of 25% and a random state of 42
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
|
||||
random_state=42)
|
||||
|
||||
# Instantiate your decision tree model
|
||||
model = DecisionTreeClassifier()
|
||||
|
||||
# TODO: Fit the model to the training data.
|
||||
model.fit(X_train, y_train)
|
||||
|
||||
# TODO: Make predictions on the test data
|
||||
y_pred = model.predict(X_test)
|
||||
|
||||
# TODO: Calculate the accuracy and assign it to the variable acc on the test
|
||||
# data.
|
||||
acc = accuracy_score(y_test, y_pred)
|
||||
print(acc)
|
||||
Reference in New Issue
Block a user