adding all work done so far (lessons 1 - 5)
This commit is contained in:
@@ -0,0 +1,25 @@
|
||||
def MSEStep(X, y, W, b, learn_rate = 0.001):
|
||||
"""
|
||||
This function implements the gradient descent step for squared error as a
|
||||
performance metric.
|
||||
|
||||
Parameters
|
||||
X : array of predictor features
|
||||
y : array of outcome values
|
||||
W : predictor feature coefficients
|
||||
b : regression function intercept
|
||||
learn_rate : learning rate
|
||||
|
||||
Returns
|
||||
W_new : predictor feature coefficients following gradient descent step
|
||||
b_new : intercept following gradient descent step
|
||||
"""
|
||||
|
||||
# compute errors
|
||||
y_pred = np.matmul(X, W) + b
|
||||
error = y - y_pred
|
||||
|
||||
# compute steps
|
||||
W_new = W + learn_rate * np.matmul(error, X)
|
||||
b_new = b + learn_rate * error.sum()
|
||||
return W_new, b_new
|
||||
Reference in New Issue
Block a user