adding all work done so far (lessons 1 - 5)

This commit is contained in:
2019-07-10 19:58:53 +01:00
parent 8085149a49
commit b982957daf
37 changed files with 19407 additions and 0 deletions

View File

@@ -0,0 +1,21 @@
Var_X,Var_Y
-0.33532,6.66854
0.02160,3.86398
-1.19438,5.16161
-0.65046,8.43823
-0.28001,5.57201
1.93258,-11.13270
1.22620,-5.31226
0.74727,-4.63725
3.32853,3.80650
2.87457,-6.06084
-1.48662,7.22328
0.37629,2.38887
1.43918,-7.13415
0.24183,2.00412
-2.79140,4.29794
1.08176,-5.86553
2.81555,-5.20711
0.54924,-3.52863
2.36449,-10.16202
-1.01925,5.31123
1 Var_X Var_Y
2 -0.33532 6.66854
3 0.02160 3.86398
4 -1.19438 5.16161
5 -0.65046 8.43823
6 -0.28001 5.57201
7 1.93258 -11.13270
8 1.22620 -5.31226
9 0.74727 -4.63725
10 3.32853 3.80650
11 2.87457 -6.06084
12 -1.48662 7.22328
13 0.37629 2.38887
14 1.43918 -7.13415
15 0.24183 2.00412
16 -2.79140 4.29794
17 1.08176 -5.86553
18 2.81555 -5.20711
19 0.54924 -3.52863
20 2.36449 -10.16202
21 -1.01925 5.31123

View File

@@ -0,0 +1,23 @@
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
df = pd.read_csv('data.csv')
# print(df)
X = df[['Var_X']]
y = df[['Var_Y']]
poly_feat = PolynomialFeatures(degree=2)
X_poly = poly_feat.fit_transform(X)
poly_model = LinearRegression(fit_intercept=False).fit(X_poly, y)
print(poly_model)
# sns.lineplot(x='Var_X', y='Var_Y', data=df)
# plt.show()

View File

@@ -0,0 +1,22 @@
# TODO: Add import statements
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
# Assign the data to predictor and outcome variables
# TODO: Load the data
train_data = pd.read_csv('data.csv')
X = train_data['Var_X'].values.reshape(-1, 1)
y = train_data['Var_Y'].values
# Create polynomial features
# TODO: Create a PolynomialFeatures object, then fit and transform the
# predictor feature
poly_feat = PolynomialFeatures(degree = 4)
X_poly = poly_feat.fit_transform(X)
# Make and fit the polynomial regression model
# TODO: Create a LinearRegression object and fit it to the polynomial predictor
# features
poly_model = LinearRegression(fit_intercept = False).fit(X_poly, y)