import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures import numpy as np import seaborn as sns import matplotlib.pyplot as plt sns.set() df = pd.read_csv('data.csv') # print(df) X = df[['Var_X']] y = df[['Var_Y']] poly_feat = PolynomialFeatures(degree=2) X_poly = poly_feat.fit_transform(X) poly_model = LinearRegression(fit_intercept=False).fit(X_poly, y) print(poly_model) # sns.lineplot(x='Var_X', y='Var_Y', data=df) # plt.show()