# Import statements from sklearn.svm import SVC from sklearn.metrics import accuracy_score import pandas as pd import numpy as np import matplotlib.pyplot as plt # Read the data. data = np.asarray(pd.read_csv('data.csv', header=None)) # Assign the features to the variable X, and the labels to the variable y. X = data[:, 0:2] y = data[:, 2] # TODO: Create the model and assign it to the variable model. # Find the right parameters for this model to achieve 100% accuracy # on the dataset. model = SVC(kernel='rbf', gamma=27) # TODO: Fit the model. model.fit(X, y) # TODO: Make predictions. Store them in the variable y_pred. y_pred = model.predict(X) # TODO: Calculate the accuracy and assign it to the variable acc. acc = accuracy_score(y, y_pred)