import pandas as pd import numpy as np from sklearn.linear_model import Lasso from sklearn.preprocessing import StandardScaler train_data = pd.read_csv('data.csv', header=None) X = train_data.iloc[:, :-1] y = train_data.iloc[:, -1] # Create the standardization scaling object scaler = StandardScaler() # Scale and fit the standardization paramaeters X_scaled = scaler.fit_transform(X) # Create the LR model with Lasso regularization lasso_reg = Lasso() # Fit the model lasso_reg.fit(X_scaled, y) # Get the regression coeficients reg_coef = lasso_reg.coef_ print(reg_coef)