import matplotlib.pyplot as plt import numpy as np from itertools import cycle, islice from sklearn import cluster figsize = (10, 10) point_size = 150 point_border = 0.8 def plot_dataset(dataset, xlim=(-15, 15), ylim=(-15, 15)): plt.figure(figsize=figsize) plt.scatter(dataset[:, 0], dataset[:, 1], s=point_size, color="#00B3E9", edgecolor='black', lw=point_border) plt.xlim(xlim) plt.ylim(ylim) plt.show() def plot_clustered_dataset(dataset, y_pred, xlim=(-15, 15), ylim=(-15, 15), neighborhood=False, epsilon=0.5): fig, ax = plt.subplots(figsize=figsize) colors = np.array(list(islice(cycle(['#df8efd', '#78c465', '#ff8e34', '#f65e97', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00']), int(max(y_pred) + 1)))) colors = np.append(colors, '#BECBD6') if neighborhood: for point in dataset: circle1 = plt.Circle( point, epsilon, color='#666666', fill=False, zorder=0, alpha=0.3) ax.add_artist(circle1) ax.scatter(dataset[:, 0], dataset[:, 1], s=point_size, color=colors[y_pred], zorder=10, edgecolor='black', lw=point_border) plt.xlim(xlim) plt.ylim(ylim) plt.show() def plot_dbscan_grid(dataset, eps_values, min_samples_values): fig = plt.figure(figsize=(16, 20)) plt.subplots_adjust(left=.02, right=.98, bottom=0.001, top=.96, wspace=.05, hspace=0.25) plot_num = 1 for i, min_samples in enumerate(min_samples_values): for j, eps in enumerate(eps_values): ax = fig.add_subplot(len(min_samples_values), len(eps_values), plot_num) dbscan = cluster.DBSCAN(eps=eps, min_samples=min_samples) y_pred_2 = dbscan.fit_predict(dataset) colors = np.array(list(islice(cycle(['#df8efd', '#78c465', '#ff8e34', '#f65e97', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00']), int(max(y_pred_2) + 1)))) colors = np.append(colors, '#BECBD6') for point in dataset: circle1 = plt.Circle( point, eps, color='#666666', fill=False, zorder=0, alpha=0.3) ax.add_artist(circle1) ax.text(0, -0.03, 'Epsilon: {} \nMin_samples: {}'.format(eps, min_samples), transform=ax.transAxes, fontsize=16, va='top') ax.scatter(dataset[:, 0], dataset[:, 1], s=50, color=colors[y_pred_2], zorder=10, edgecolor='black', lw=0.5) plt.xticks(()) plt.yticks(()) plt.xlim(-14, 5) plt.ylim(-12, 7) plot_num = plot_num + 1 plt.show()