# TODO: Add import statements import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures # Assign the data to predictor and outcome variables # TODO: Load the data train_data = pd.read_csv('data.csv') X = train_data['Var_X'].values.reshape(-1, 1) y = train_data['Var_Y'].values # Create polynomial features # TODO: Create a PolynomialFeatures object, then fit and transform the # predictor feature poly_feat = PolynomialFeatures(degree = 4) X_poly = poly_feat.fit_transform(X) # Make and fit the polynomial regression model # TODO: Create a LinearRegression object and fit it to the polynomial predictor # features poly_model = LinearRegression(fit_intercept = False).fit(X_poly, y)