import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn.datasets import make_blobs # Generate Question 1 Data X, y = make_blobs(n_samples=500, n_features=3, centers=4, random_state=5) def plot_q1_data(): fig = plt.figure() ax = Axes3D(fig) ax.scatter(X[:, 0], X[:, 1], X[:, 2]); # Generate Question 2 Data Z, y = make_blobs(n_samples=500, n_features=5, centers=2, random_state=42) def plot_q2_data(): fig = plt.figure() plt.scatter(Z[:, 0], Z[:, 1]); # Generate Question 3 Data T, y = make_blobs(n_samples=500, n_features=5, centers=8, random_state=5) def plot_q3_data(): fig = plt.figure() ax = Axes3D(fig) ax.scatter(T[:, 1], T[:, 3], T[:, 4]); # Plot data for Question 4 def plot_q4_data(): fig = plt.figure() ax = Axes3D(fig) ax.scatter(T[:, 1], T[:, 2], T[:, 3]);