Files
udacity/python/Deep Learning/Introduction to Neural Networks/Gradient Descent/GradientDescentSolutions.ipynb

60 lines
1.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solutions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
":\n",
"# Activation (sigmoid) function\n",
"def sigmoid(x):\n",
" return 1 / (1 + np.exp(-x))\n",
"\n",
"def output_formula(features, weights, bias):\n",
" return sigmoid(np.dot(features, weights) + bias)\n",
"\n",
"def error_formula(y, output):\n",
" return - y*np.log(output) - (1 - y) * np.log(1-output)\n",
"\n",
"def update_weights(x, y, weights, bias, learnrate):\n",
" output = output_formula(x, weights, bias)\n",
" d_error = y - output\n",
" weights += learnrate * d_error * x\n",
" bias += learnrate * d_error\n",
" return weights, bias"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}