Files
udacity/python/Deep Learning/Introduction to Neural Networks/Student Admissions(Neural Network)/StudentAdmissionsSolutions.ipynb

116 lines
2.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Solutions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### One-hot encoding the rank"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Make dummy variables for rank\n",
"one_hot_data = pd.concat([data, pd.get_dummies(data['rank'], prefix='rank')], axis=1)\n",
"\n",
"# Drop the previous rank column\n",
"one_hot_data = one_hot_data.drop('rank', axis=1)\n",
"\n",
"# Print the first 10 rows of our data\n",
"one_hot_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Scaling the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Copying our data\n",
"processed_data = one_hot_data[:]\n",
"\n",
"# Scaling the columns\n",
"processed_data['gre'] = processed_data['gre']/800\n",
"processed_data['gpa'] = processed_data['gpa']/4.0\n",
"processed_data[:10]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Backpropagating the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def error_term_formula(x, y, output):\n",
" return (y - output)*sigmoid_prime(x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## alternative solution ##\n",
"# you could also *only* use y and the output \n",
"# and calculate sigmoid_prime directly from the activated output!\n",
"\n",
"# below is an equally valid solution (it doesn't utilize x)\n",
"def error_term_formula(x, y, output):\n",
" return (y-output) * output * (1 - output)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}