mirror of
https://github.com/dtomlinson91/street_group_tech_test
synced 2025-12-22 11:55:45 +00:00
Compare commits
5 Commits
wip/spark_
...
wip/pathli
| Author | SHA1 | Date | |
|---|---|---|---|
| 7f874fa6f6 | |||
| b8a997084d | |||
| c4e81065b1 | |||
| 62bd0196ad | |||
| 7f9b7e4bfd |
1
.python-version
Normal file
1
.python-version
Normal file
@@ -0,0 +1 @@
|
||||
3.7.9
|
||||
@@ -1,2 +1,9 @@
|
||||
# street_group_tech_test
|
||||
Technical Test for Street Group
|
||||
|
||||
Technical Test for Street Group for Daniel Tomlinson.
|
||||
|
||||
## Documentation
|
||||
|
||||
Read the documentation on github pages for instructions around running the code and a discussion on the approach.
|
||||
|
||||
https://dtomlinson91.github.io/street_group_tech_test/
|
||||
|
||||
@@ -1,23 +1,13 @@
|
||||
import csv
|
||||
from datetime import datetime
|
||||
import hashlib
|
||||
import io
|
||||
from importlib import resources
|
||||
import itertools
|
||||
import pathlib
|
||||
|
||||
import apache_beam as beam
|
||||
from apache_beam.io import fileio
|
||||
from apache_beam.options.pipeline_options import PipelineOptions
|
||||
|
||||
# from analyse_properties.debug import DebugShowEmptyColumn, DebugShowColumnWithValueIn
|
||||
|
||||
|
||||
def csv_reader(csv_file):
|
||||
"""Read in a csv file."""
|
||||
return csv.reader(io.TextIOWrapper(csv_file.open()))
|
||||
|
||||
|
||||
def slice_by_range(element, *ranges):
|
||||
"""Slice a list with multiple ranges."""
|
||||
return itertools.chain(*(itertools.islice(element, *r) for r in ranges))
|
||||
@@ -176,7 +166,7 @@ class ConvertDataToDict(beam.DoFn):
|
||||
# Create the dict to hold all the information about the property.
|
||||
json_object = {
|
||||
"property_id": element[0],
|
||||
# "readable_address": None,
|
||||
"readable_address": None,
|
||||
"flat_appartment": element[-1][0][4],
|
||||
"builing": element[-1][0][10],
|
||||
"number": element[-1][0][3],
|
||||
@@ -196,117 +186,99 @@ class ConvertDataToDict(beam.DoFn):
|
||||
}
|
||||
|
||||
# Create a human readable address to go in the dict.
|
||||
# json_object["readable_address"] = self.get_readable_address(
|
||||
# [
|
||||
# json_object["flat_appartment"],
|
||||
# json_object["builing"],
|
||||
# f'{json_object["number"]} {json_object["street"]}',
|
||||
# json_object["postcode"],
|
||||
# ],
|
||||
# [
|
||||
# json_object["locality"],
|
||||
# json_object["town"],
|
||||
# json_object["district"],
|
||||
# json_object["county"],
|
||||
# ],
|
||||
# )
|
||||
json_object["readable_address"] = self.get_readable_address(
|
||||
[
|
||||
json_object["flat_appartment"],
|
||||
json_object["builing"],
|
||||
f'{json_object["number"]} {json_object["street"]}',
|
||||
json_object["postcode"],
|
||||
],
|
||||
[
|
||||
json_object["locality"],
|
||||
json_object["town"],
|
||||
json_object["district"],
|
||||
json_object["county"],
|
||||
],
|
||||
)
|
||||
yield json_object
|
||||
|
||||
|
||||
def main():
|
||||
# Load in the data from a csv file.
|
||||
# csv_data = resources.path(
|
||||
# "analyse_properties.data.input",
|
||||
# "pp-monthly-update-new-version.csv"
|
||||
# # "analyse_properties.data.input",
|
||||
# # "pp-complete.csv",
|
||||
# )
|
||||
|
||||
options = PipelineOptions(
|
||||
[
|
||||
"--runner=PortableRunner",
|
||||
"--job_endpoint=localhost:8099",
|
||||
"--environment_type=LOOPBACK",
|
||||
]
|
||||
input_file = (
|
||||
pathlib.Path(__file__).parents[1]
|
||||
/ "data"
|
||||
/ "input"
|
||||
/ "pp-monthly-update-new-version.csv"
|
||||
)
|
||||
|
||||
with beam.Pipeline(options=options) as pipeline:
|
||||
with beam.Pipeline() as pipeline:
|
||||
# Load the data
|
||||
# with csv_data as csv_data_file:
|
||||
# # https://github.com/apache/beam/blob/v2.32.0/sdks/python/apache_beam/io/fileio_test.py#L155-L170
|
||||
# load = (
|
||||
# pipeline
|
||||
# | fileio.MatchFiles(str(csv_data_file))
|
||||
# | fileio.ReadMatches()
|
||||
# | beam.FlatMap(csv_reader)
|
||||
# )
|
||||
|
||||
load = pipeline | beam.Create(
|
||||
[
|
||||
"🍓Strawberry,🥕Carrot,🍆Eggplant",
|
||||
"🍅Tomato,🥔Potato",
|
||||
]
|
||||
load = (
|
||||
pipeline
|
||||
| "Read input data" >> beam.io.ReadFromText(str(input_file))
|
||||
| "Split by ','" >> beam.Map(lambda element: element.split(","))
|
||||
| "Remove leading and trailing quotes"
|
||||
>> beam.Map(lambda element: [el.strip('"') for el in element])
|
||||
)
|
||||
|
||||
# Clean the data by dropping unneeded rows.
|
||||
# clean_drop = (
|
||||
# load
|
||||
# | "Drop unneeded columns"
|
||||
# >> beam.Map(lambda element: list(slice_by_range(element, (1, 4), (7, 14))))
|
||||
# | "Convert to Upper Case"
|
||||
# >> beam.Map(lambda element: [e.upper() for e in element])
|
||||
# | "Strip leading/trailing whitespace"
|
||||
# >> beam.Map(lambda element: [e.strip() for e in element])
|
||||
# | "Drop Empty Postcodes" >> beam.ParDo(DropRecordsSingleEmptyColumn(2))
|
||||
# | "Drop empty PAON if missing SAON"
|
||||
# >> beam.ParDo(DropRecordsTwoEmptyColumn(3, 4))
|
||||
# | "Split PAON into two columns if separated by comma"
|
||||
# >> beam.ParDo(SplitColumn(3, ","))
|
||||
# )
|
||||
clean_drop = (
|
||||
load
|
||||
| "Drop unneeded columns"
|
||||
>> beam.Map(lambda element: list(slice_by_range(element, (1, 4), (7, 14))))
|
||||
| "Convert to Upper Case"
|
||||
>> beam.Map(lambda element: [e.upper() for e in element])
|
||||
| "Strip leading/trailing whitespace"
|
||||
>> beam.Map(lambda element: [e.strip() for e in element])
|
||||
| "Drop Empty Postcodes" >> beam.ParDo(DropRecordsSingleEmptyColumn(2))
|
||||
| "Drop empty PAON if missing SAON"
|
||||
>> beam.ParDo(DropRecordsTwoEmptyColumn(3, 4))
|
||||
| "Split PAON into two columns if separated by comma"
|
||||
>> beam.ParDo(SplitColumn(3, ","))
|
||||
)
|
||||
|
||||
# # Clean the data by creating an ID, and deduplicating to eliminate repeated rows.
|
||||
# clean_deduplicate = (
|
||||
# clean_drop
|
||||
# | "Generate unique ID for all columns"
|
||||
# >> beam.ParDo(GenerateUniqueID(all_columns=True))
|
||||
# | "Group by the ID for all columns"
|
||||
# >> beam.GroupBy(lambda element: element[-1])
|
||||
# | "Deduplicate by the ID for all columns" >> beam.ParDo(DeduplicateByID())
|
||||
# )
|
||||
# Clean the data by creating an ID, and deduplicating to eliminate repeated rows.
|
||||
clean_deduplicate = (
|
||||
clean_drop
|
||||
| "Generate unique ID for all columns"
|
||||
>> beam.ParDo(GenerateUniqueID(all_columns=True))
|
||||
| "Group by the ID for all columns"
|
||||
>> beam.GroupBy(lambda element: element[-1])
|
||||
| "Deduplicate by the ID for all columns" >> beam.ParDo(DeduplicateByID())
|
||||
)
|
||||
|
||||
# # Prepare the data by generating an ID using the uniquely identifying information only
|
||||
# # and grouping them by this ID.
|
||||
# prepare = (
|
||||
# clean_deduplicate
|
||||
# | "Remove previous unique ID" >> beam.ParDo(RemoveUniqueID())
|
||||
# | "Generate unique ID ignoring price & date"
|
||||
# >> beam.ParDo(GenerateUniqueID())
|
||||
# | "Group by the ID ignoring price & date"
|
||||
# >> beam.GroupBy(lambda element: element[-1])
|
||||
# )
|
||||
# Prepare the data by generating an ID using the uniquely identifying information only
|
||||
# and grouping them by this ID.
|
||||
prepare = (
|
||||
clean_deduplicate
|
||||
| "Remove previous unique ID" >> beam.ParDo(RemoveUniqueID())
|
||||
| "Generate unique ID ignoring price & date"
|
||||
>> beam.ParDo(GenerateUniqueID())
|
||||
| "Group by the ID ignoring price & date"
|
||||
>> beam.GroupBy(lambda element: element[-1])
|
||||
)
|
||||
|
||||
# # Format the data into a dict.
|
||||
# formatted = (
|
||||
# prepare
|
||||
# | "Convert the prepared data into a dict object"
|
||||
# >> beam.ParDo(ConvertDataToDict())
|
||||
# )
|
||||
# Format the data into a dict.
|
||||
formatted = (
|
||||
prepare
|
||||
| "Convert the prepared data into a dict object"
|
||||
>> beam.ParDo(ConvertDataToDict())
|
||||
)
|
||||
|
||||
# # Save the data to a .json file.
|
||||
# output_file = pathlib.Path(__file__).parent / "data" / "output" / "pp-complete"
|
||||
# # output_file = "/tmp/file"
|
||||
|
||||
# (
|
||||
# formatted
|
||||
# | "Combine into one PCollection" >> beam.combiners.ToList()
|
||||
# | beam.Map(print)
|
||||
# # | "Save to .json file"
|
||||
# # >> beam.io.WriteToText(
|
||||
# # file_path_prefix=str(output_file),
|
||||
# # file_name_suffix=".json",
|
||||
# # shard_name_template="",
|
||||
# # )
|
||||
# )
|
||||
# Save the data to a .json file.
|
||||
output_file = (
|
||||
pathlib.Path(__file__).parents[1] / "data" / "output" / "pp-complete"
|
||||
)
|
||||
output = (
|
||||
formatted
|
||||
| "Combine into one PCollection" >> beam.combiners.ToList()
|
||||
| "Save to .json file"
|
||||
>> beam.io.WriteToText(
|
||||
file_path_prefix=str(output_file),
|
||||
file_name_suffix=".json",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
# Full data set
|
||||
wget https://storage.googleapis.com/street-group-technical-test-dmot/pp-complete.csv -P analyse_properties/data/input
|
||||
# wget https://storage.googleapis.com/street-group-technical-test-dmot/pp-complete.csv -P data/input
|
||||
|
||||
# Monthly update data set
|
||||
# wget https://storage.googleapis.com/street-group-technical-test-dmot/pp-monthly-update-new-version.csv -P analyse_properties/data/input
|
||||
wget https://storage.googleapis.com/street-group-technical-test-dmot/pp-monthly-update-new-version.csv -P data/input
|
||||
|
||||
@@ -1,14 +0,0 @@
|
||||
docker run --rm \
|
||||
-p 8098:8098 -p 8097:8097 -p 8099:8099 \
|
||||
--name=beam_spark \
|
||||
apache/beam_spark_job_server:latest
|
||||
|
||||
|
||||
docker pull apache/beam_spark_job_server:2.33.0_rc1
|
||||
|
||||
|
||||
docker run --rm \
|
||||
-e SPARK_DRIVER_MEMORY=8g \
|
||||
-p 8098:8098 -p 8097:8097 -p 8099:8099 \
|
||||
--name=beam_spark \
|
||||
apache/beam_spark_job_server:latest
|
||||
@@ -1,6 +0,0 @@
|
||||
apache-beam==2.32.0; python_version >= "3.6"
|
||||
avro-python3==1.9.2.1; python_version >= "3.6"
|
||||
cachetools==4.2.2; python_version >= "3.6" and python_version < "4.0" and (python_version >= "3.6" and python_full_version < "3.0.0" or python_version >= "3.6" and python_full_version >= "3.6.0")
|
||||
certifi==2021.5.30; python_version >= "3.6" and python_full_version < "3.0.0" or python_full_version >= "3.6.0" and python_version >= "3.6"
|
||||
mkdocs-material==7.3.0
|
||||
mkdocs==1.2.2; python_version >= "3.6"
|
||||
Reference in New Issue
Block a user