Files
2019-11-04 14:38:31 +00:00

158 lines
5.3 KiB
Python

#importing necessary libraries
import matplotlib.pyplot as plt
import torch
import numpy as np
from torch import nn
from torch import optim
from torchvision import datasets, models, transforms
import torch.nn.functional as F
import torch.utils.data
import pandas as pd
from collections import OrderedDict
from PIL import Image
import argparse
import json
# define Mandatory and Optional Arguments for the script
parser = argparse.ArgumentParser (description = "Parser of prediction script")
parser.add_argument ('image_dir', help = 'Provide path to image. Mandatory argument', type = str)
parser.add_argument ('load_dir', help = 'Provide path to checkpoint. Mandatory argument', type = str)
parser.add_argument ('--top_k', help = 'Top K most likely classes. Optional', type = int)
parser.add_argument ('--category_names', help = 'Mapping of categories to real names. JSON file name to be provided. Optional', type = str)
parser.add_argument ('--GPU', help = "Option to use GPU. Optional", type = str)
# a function that loads a checkpoint and rebuilds the model
def loading_model (file_path):
checkpoint = torch.load (file_path) #loading checkpoint from a file
if checkpoint ['arch'] == 'alexnet':
model = models.alexnet (pretrained = True)
else: #vgg13 as only 2 options available
model = models.vgg13 (pretrained = True)
model.classifier = checkpoint ['classifier']
model.load_state_dict (checkpoint ['state_dict'])
model.class_to_idx = checkpoint ['mapping']
for param in model.parameters():
param.requires_grad = False #turning off tuning of the model
return model
# function to process a PIL image for use in a PyTorch model
def process_image(image):
''' Scales, crops, and normalizes a PIL image for a PyTorch model,
returns an Numpy array
'''
im = Image.open (image) #loading image
width, height = im.size #original size
# smallest part: width or height should be kept not more than 256
if width > height:
height = 256
im.thumbnail ((50000, height), Image.ANTIALIAS)
else:
width = 256
im.thumbnail ((width,50000), Image.ANTIALIAS)
width, height = im.size #new size of im
#crop 224x224 in the center
reduce = 224
left = (width - reduce)/2
top = (height - reduce)/2
right = left + 224
bottom = top + 224
im = im.crop ((left, top, right, bottom))
#preparing numpy array
np_image = np.array (im)/255 #to make values from 0 to 1
np_image -= np.array ([0.485, 0.456, 0.406])
np_image /= np.array ([0.229, 0.224, 0.225])
#PyTorch expects the color channel to be the first dimension but it's the third dimension in the PIL image and Numpy array.
#The color channel needs to be first and retain the order of the other two dimensions.
np_image= np_image.transpose ((2,0,1))
return np_image
#defining prediction function
def predict(image_path, model, topkl, device):
''' Predict the class (or classes) of an image using a trained deep learning model.
'''
# Implement the code to predict the class from an image file
image = process_image (image_path) #loading image and processing it using above defined function
#we cannot pass image to model.forward 'as is' as it is expecting tensor, not numpy array
#converting to tensor
if device == 'cuda':
im = torch.from_numpy (image).type (torch.cuda.FloatTensor)
else:
im = torch.from_numpy (image).type (torch.FloatTensor)
im = im.unsqueeze (dim = 0) #used to make size of torch as expected. as forward method is working with batches,
#doing that we will have batch size = 1
#enabling GPU/CPU
model.to (device)
im.to (device)
with torch.no_grad ():
output = model.forward (im)
output_prob = torch.exp (output) #converting into a probability
probs, indeces = output_prob.topk (topkl)
probs = probs.cpu ()
indeces = indeces.cpu ()
probs = probs.numpy () #converting both to numpy array
indeces = indeces.numpy ()
probs = probs.tolist () [0] #converting both to list
indeces = indeces.tolist () [0]
mapping = {val: key for key, val in
model.class_to_idx.items()
}
classes = [mapping [item] for item in indeces]
classes = np.array (classes) #converting to Numpy array
return probs, classes
#setting values data loading
args = parser.parse_args ()
file_path = args.image_dir
#defining device: either cuda or cpu
if args.GPU == 'GPU':
device = 'cuda'
else:
device = 'cpu'
#loading JSON file if provided, else load default file name
if args.category_names:
with open(args.category_names, 'r') as f:
cat_to_name = json.load(f)
else:
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
pass
#loading model from checkpoint provided
model = loading_model (args.load_dir)
#defining number of classes to be predicted. Default = 1
if args.top_k:
nm_cl = args.top_k
else:
nm_cl = 1
#calculating probabilities and classes
probs, classes = predict (file_path, model, nm_cl, device)
#preparing class_names using mapping with cat_to_name
class_names = [cat_to_name [item] for item in classes]
for l in range (nm_cl):
print("Number: {}/{}.. ".format(l+1, nm_cl),
"Class name: {}.. ".format(class_names [l]),
"Probability: {:.3f}..% ".format(probs [l]*100),
)