Files
python-VM/markov/markov_test.py
2019-07-12 02:00:12 +01:00

210 lines
7.4 KiB
Python

import numpy as np
import itertools
import functools
""" Set our parameters """
# Should we seed the results?
setSeed = False
seedNum = 27
""" Simulation parameters """
# Should we simulate more than once?
setSim = True
simNum = 1
""" Define our data """
# The Statespace
states = np.array(['L', 'w', 'W'])
# Possible sequences of events
transitionName = np.array([['LL', 'Lw', 'LW'],
['wL', 'ww', 'wW'],
['WL', 'Ww', 'WW']])
# Probabilities Matrix (transition matrix)
transitionMatrix = np.array([[0.6, 0.1, 0.3],
[0.1, 0.7, 0.2],
[0.2, 0.2, 0.6]])
# Starting state
startingState = 'w'
initial_dist = np.array([0.3, 0.3, 0.4])
# Steps to run
stepTime = 2
# End state you want to find probabilites of
endState = 'W'
# Get P_steps
p_steps = False
# Get Stationary Dist
stat_dist = False
# A class that implements the Markov chain to forecast the state/mood:
class markov(object):
"""simulates a markov chain given its states, current state and
transition matrix.
Parameters:
states: 1-d array containing all the possible states
transitionName: 2-d array containing a list
of the all possible state directions
transitionMatrix: 2-d array containing all
the probabilites of moving to each state
currentState: a string indicating the starting state
steps: an integer determining how many steps (or times) to simulate"""
def __init__(self, states: np.array, transitionName: np.array,
transitionMatrix: np.array, currentState: str,
steps: int):
super(markov, self).__init__()
self.states = states
self.list = list
self.transitionName = transitionName
self.transitionMatrix = transitionMatrix
self.currentState = currentState
self.steps = steps
@staticmethod
def setSeed(num: int):
return np.random.seed(num)
@staticmethod
def p_steps(transitionMatrix, initial_dist, steps):
for _ in itertools.repeat(None, steps):
initial_dist = transitionMatrix.T.dot(initial_dist)
return initial_dist
@staticmethod
def stationary_dist(transitionMatrix, initial_dist, steps):
for _ in itertools.repeat(None, steps):
initial_dist = transitionMatrix.T.dot(initial_dist)
return initial_dist
@functools.lru_cache(maxsize=128)
def forecast(self):
print(f'Start state: {self.currentState}')
# Shall store the sequence of states taken
self.stateList = [self.currentState]
i = 0
# To calculate the probability of the stateList
self.prob = 1
while i != self.steps:
if self.currentState == 'L':
self.change = np.random.choice(self.transitionName[0],
replace=True,
p=transitionMatrix[0])
if self.change == 'LL':
self.prob = self.prob * 0.8
self.stateList.append('L')
pass
elif self.change == 'Lw':
self.prob = self.prob * 0.15
self.currentState = 'w'
self.stateList.append('w')
else:
self.prob = self.prob * 0.05
self.currentState = "W"
self.stateList.append("W")
elif self.currentState == "w":
self.change = np.random.choice(self.transitionName[1],
replace=True,
p=transitionMatrix[1])
if self.change == "ww":
self.prob = self.prob * 0.15
self.stateList.append("w")
pass
elif self.change == "wL":
self.prob = self.prob * 0.8
self.currentState = "L"
self.stateList.append("L")
else:
self.prob = self.prob * 0.05
self.currentState = "W"
self.stateList.append("W")
elif self.currentState == "W":
self.change = np.random.choice(self.transitionName[2],
replace=True,
p=transitionMatrix[2])
if self.change == "WW":
self.prob = self.prob * 0.05
self.stateList.append("W")
pass
elif self.change == "WL":
self.prob = self.prob * 0.8
self.currentState = "L"
self.stateList.append("L")
else:
self.prob = self.prob * 0.15
self.currentState = "w"
self.stateList.append("w")
i += 1
print(f'Possible states: {self.stateList}')
print(f'End state after {self.steps} steps: {self.currentState}')
print(f'Probability of all the possible sequence of states:'
f' {self.prob}\n')
return self.stateList
def main(*args, **kwargs):
global startingState
try:
simNum = kwargs['simNum']
except KeyError:
pass
sumTotal = 0
# Check validity of transitionMatrix
for i in range(len(transitionMatrix)):
sumTotal += sum(transitionMatrix[i])
if i != len(states) and i == len(transitionMatrix):
raise ValueError('Probabilities should add to 1')
# Set the seed so we can repeat with the same results
if setSeed:
markov.setSeed(seedNum)
# Save our simulations:
list_state = []
count = 0
# Simulate Multiple Times
if setSim:
if initial_dist is not None:
startingState = np.random.choice(states, p=initial_dist)
for _ in itertools.repeat(None, simNum):
markovChain = markov(states, transitionName,
transitionMatrix, startingState,
stepTime)
list_state.append(markovChain.forecast())
startingState = np.random.choice(states, p=initial_dist)
else:
for _ in itertools.repeat(None, simNum):
markovChain = markov(states, transitionName,
transitionMatrix, startingState,
stepTime)
list_state.append(markovChain.forecast())
else:
for _ in range(1, 2):
list_state.append(markov(states, transitionName,
transitionMatrix, startingState,
stepTime).forecast())
for list in list_state:
if(list[-1] == f'{endState!s}'):
print(True, list)
count += 1
else:
print(False, list)
if setSim is False:
simNum = 1
print(f'\nThe probability of starting in {startingState} and finishing'
f' in {endState} after {stepTime} steps is {(count / simNum):.2%}')
if p_steps:
print(f'P_{stepTime} is '
f'{markov.p_steps(transitionMatrix, initial_dist, stepTime)}')
if stat_dist:
print(f'Stat dist is {markov.stationary_dist(transitionMatrix,initial_dist, stepTime)}')
if __name__ == '__main__':
main(simNum=simNum)