Files

23 lines
769 B
Python

# TODO: Add import statements
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
# Assign the data to predictor and outcome variables
# TODO: Load the data
train_data = pd.read_csv('data.csv')
X = train_data['Var_X'].values.reshape(-1, 1)
y = train_data['Var_Y'].values
# Create polynomial features
# TODO: Create a PolynomialFeatures object, then fit and transform the
# predictor feature
poly_feat = PolynomialFeatures(degree = 4)
X_poly = poly_feat.fit_transform(X)
# Make and fit the polynomial regression model
# TODO: Create a LinearRegression object and fit it to the polynomial predictor
# features
poly_model = LinearRegression(fit_intercept = False).fit(X_poly, y)